
and latency within
∼
=
500s against 4026 rows and 96
columns. Future research is envisioned for extending
FunBic-CCA to guarantee security with abort against
malicious adversaries, using MACs
6
.
REFERENCES
Alizadeh, A. A., Eisen, M. B., Davis, R. E., Ma, C., Lossos,
I. S., Rosenwald, A., Boldrick, J. C., Sabet, H., Tran,
T., Yu, X., et al. (2000). Distinct types of diffuse large
b-cell lymphoma identified by gene expression profil-
ing. Nature, 403(6769):503–511.
Beaver, D. (1992). Efficient multiparty protocols us-
ing circuit randomization. In Advances in Cryptol-
ogy—CRYPTO’91: Proceedings 11, pages 420–432.
Springer.
Boyle, E., Chandran, N., Gilboa, N., Gupta, D., Ishai, Y.,
Kumar, N., and Rathee, M. (2021). Function se-
cret sharing for mixed-mode and fixed-point secure
computation. In Annual International Conference on
the Theory and Applications of Cryptographic Tech-
niques, pages 871–900. Springer.
Boyle, E., Gilboa, N., and Ishai, Y. (2015). Function secret
sharing. In Annual international conference on the
theory and applications of cryptographic techniques,
pages 337–367. Springer.
Boyle, E., Gilboa, N., and Ishai, Y. (2019). Secure compu-
tation with preprocessing via function secret sharing.
In Theory of Cryptography: 17th International Con-
ference, TCC 2019, Nuremberg, Germany, December
1–5, 2019, Proceedings, Part I 17, pages 341–371.
Springer.
Canetti, R. (2001). Universally composable security: A new
paradigm for cryptographic protocols. In Proceedings
42nd IEEE Symposium on Foundations of Computer
Science, pages 136–145. IEEE.
Cheng, N., Gupta, N., Mitrokotsa, A., Morita, H., and
Tozawa, K. (2024). Constant-round private decision
tree evaluation for secret shared data. Proceedings on
Privacy Enhancing Technologies.
Cheng, Y. and Church, G. M. (2000). Biclustering of ex-
pression data. In Ismb, volume 8, pages 93–103.
Dauterman, E., Rathee, M., Popa, R. A., and Stoica, I.
(2022). Waldo: A private time-series database from
function secret sharing. In 2022 IEEE Symposium on
Security and Privacy (SP), pages 2450–2468. IEEE.
Demmler, D., Schneider, T., and Zohner, M. (2015). Aby-
a framework for efficient mixed-protocol secure two-
party computation. In NDSS.
Escudero, D. (2022). An introduction to secret-sharing-
based secure multiparty computation. Cryptology
ePrint Archive.
Fraiman, N. and Li, Z. (2020). Biclustering with alternating
k-means. arXiv preprint arXiv:2009.04550.
6
Primitive that is used to guarantee data integrity and
authenticate the parties’ shares.
Galvani, M., Torti, A., Menafoglio, A., and Vantini, S.
(2021). Funcc: A new bi-clustering algorithm for
functional data with misalignment. Computational
Statistics & Data Analysis, 160:107219.
Guo, X., Li, X., Chang, X., and Ma, S. (2023).
Privacy-preserving community detection for locally
distributed multiple networks. arXiv preprint
arXiv:2306.15709.
Ibarrondo, A., Chabanne, H., and
¨
Onen, M. (2023). Fun-
shade: Function secret sharing for two-party secure
thresholded distance evaluation. Proceedings on Pri-
vacy Enhancing Technologies.
Knott, B., Venkataraman, S., Hannun, A., Sengupta, S.,
Ibrahim, M., and van der Maaten, L. (2021). Crypten:
Secure multi-party computation meets machine learn-
ing. Advances in Neural Information Processing Sys-
tems, 34:4961–4973.
Lakshmi, M. N. and Rani, K. S. (2013). Svd based data
transformation methods for privacy preserving clus-
tering. International Journal of Computer Applica-
tions, 78(3).
Lin, R., Wang, S., and Guo, W. (2019). An overview of
co-clustering via matrix factorization. IEEE Access,
7:33481–33493.
Liu, X. and Wang, L. (2007). Computing the maximum
similarity bi-clusters of gene expression data. Bioin-
formatics, 23(1):50–56.
Padilha, V. A. and Campello, R. J. (2017). A sys-
tematic comparative evaluation of biclustering tech-
niques. BMC bioinformatics, 18:1–25.
Preli
´
c, A., Bleuler, S., Zimmermann, P., Wille, A.,
B
¨
uhlmann, P., Gruissem, W., Hennig, L., Thiele, L.,
and Zitzler, E. (2006). A systematic comparison and
evaluation of biclustering methods for gene expres-
sion data. Bioinformatics, 22(9):1122–1129.
Ryffel, T., Tholoniat, P., Pointcheval, D., and Bach, F.
(2020). Ariann: Low-interaction privacy-preserving
deep learning via function secret sharing. arXiv
preprint arXiv:2006.04593.
Tavazoie, S., Hughes, J. D., Campbell, M. J., Cho, R. J.,
and Church, G. M. (1999). Systematic determina-
tion of genetic network architecture. Nature genetics,
22(3):281–285.
Yang, P., Jiang, Z. L., Gao, S., Wang, H., Zhou, J.,
Jin, Y., Yiu, S.-M., and Fang, J. (2023). Fssnn:
communication-efficient secure neural network train-
ing via function secret sharing. Cryptology ePrint
Archive.
SECRYPT 2025 - 22nd International Conference on Security and Cryptography
48