
vative applications and real-world deployment of AI
technologies. Future research will focus on evaluat-
ing path-planning problems in more realistic scenar-
ios and simulation environments. This includes in-
tegrating more complex environmental variables and
constraints to further evaluate and enhance the robust-
ness of the proposed framework. Additionally, ex-
ploring the scalability of LLMs in diverse and larger-
scale applications will be crucial in advancing the
practical deployment of embodied AI systems in mo-
bile robotics.
REFERENCES
Ab Wahab, M. N., Nazir, A., Khalil, A., Ho, W. J., Ak-
bar, M. F., Noor, M. H. M., and Mohamed, A. S. A.
(2024). Improved genetic algorithm for mobile robot
path planning in static environments. Expert Systems
with Applications, 249:123762.
Achiam, J., Adler, S., Agarwal, S., Ahmad, L., Akkaya, I.,
Aleman, F. L., Almeida, D., Altenschmidt, J., Altman,
S., Anadkat, S., et al. (2023). Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.
Ali, Z. A. and Israr, A. (2024). Motion Planning for Dy-
namic Agents. BoD–Books on Demand.
Anderson, P., Chang, A., Chaplot, D. S., Dosovitskiy, A.,
Gupta, S., Koltun, V., Kosecka, J., Malik, J., Mot-
taghi, R., Savva, M., et al. (2018). On evalua-
tion of embodied navigation agents. arXiv preprint
arXiv:1807.06757.
Barraquand, J., Langlois, B., and Latombe, J.-C. (1992).
Numerical potential field techniques for robot path
planning. IEEE transactions on systems, man, and
cybernetics, 22(2):224–241.
Br
¨
aunl, T. (2020). Robot adventures in Python and C.
Springer.
Br
¨
aunl, T. (2023). Mobile Robot Programming: Adventures
in Python and C. Springer International Publishing.
Cao, L. (2024). Ai robots and humanoid ai: Re-
view, perspectives and directions. arXiv preprint
arXiv:2405.15775.
Castillo, O., Trujillo, L., and Melin, P. (2007). Multiple ob-
jective genetic algorithms for path-planning optimiza-
tion in autonomous mobile robots. Soft Computing,
11:269–279.
Chen, Y., Han, Y., and Li, X. (2025). Fastnav: Fine-tuned
adaptive small-language- models trained for multi-
point robot navigation. IEEE Robotics and Automa-
tion Letters, 10(1):390–397.
Chrisley, R. (2003). Embodied artificial intelligence. Arti-
ficial intelligence, 149(1):131–150.
Dewang, H. S., Mohanty, P. K., and Kundu, S. (2018). A
robust path planning for mobile robot using smart par-
ticle swarm optimization. Procedia computer science,
133:290–297.
Di Franco, C. and Buttazzo, G. (2016). Coverage path plan-
ning for uavs photogrammetry with energy and reso-
lution constraints. Journal of Intelligent & Robotic
Systems, 83:445–462.
Dorbala, V. S., Chowdhury, S., and Manocha, D. (2024).
Can llms generate human-like wayfinding instruc-
tions? towards platform-agnostic embodied instruc-
tion synthesis. arXiv preprint arXiv:2403.11487.
Driess, D., Xia, F., Sajjadi, M. S. M., Lynch, C., Chowd-
hery, A., Ichter, B., Wahid, A., Tompson, J., Vuong,
Q., Yu, T., Huang, W., Chebotar, Y., Sermanet, P.,
Duckworth, D., Levine, S., Vanhoucke, V., Haus-
man, K., Toussaint, M., Greff, K., Zeng, A., Mor-
datch, I., and Florence, P. (2023). Palm-e: An em-
bodied multimodal language model. In arXiv preprint
arXiv:2303.03378.
Ferguson, D. and Stentz, A. (2005). The field d* algo-
rithm for improved path planning and replanning in
uniform and non-uniform cost environments. Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA,
Tech. Rep. CMU-RI-TR-05-19.
Galceran, E. and Carreras, M. (2012). Efficient seabed
coverage path planning for asvs and auvs. In 2012
IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 88–93. IEEE.
Gu, S. (2023). Llms as potential brainstorming part-
ners for math and science problems. arXiv preprint
arXiv:2310.10677.
Hadi, M. U., Qureshi, R., Shah, A., Irfan, M., Zafar, A.,
Shaikh, M. B., Akhtar, N., Wu, J., Mirjalili, S., et al.
(2023). A survey on large language models: Appli-
cations, challenges, limitations, and practical usage.
Authorea Preprints.
Hazem, S., Mostafa, M., Mohamed, E., Hesham, M., Mo-
hamed, A., Lotfy, E., Mahmoud, A., and Yacoub, M.
(2021). Design and path planning of autonomous so-
lar lawn mower. In International Design Engineering
Technical Conferences and Computers and Informa-
tion in Engineering Conference, volume 85369, page
V001T01A016. American Society of Mechanical En-
gineers.
Hewawasam, H., Ibrahim, M. Y., and Appuhamillage, G. K.
(2022). Past, present and future of path-planning al-
gorithms for mobile robot navigation in dynamic envi-
ronments. IEEE Open Journal of the Industrial Elec-
tronics Society, 3:353–365.
Hoffman, K. L., Padberg, M., Rinaldi, G., et al. (2013).
Traveling salesman problem. Encyclopedia of op-
erations research and management science, 1:1573–
1578.
Kuo, Y.-L., Katz, B., and Barbu, A. (2020). Deep compo-
sitional robotic planners that follow natural language
commands.
Latif, E. (2024). 3p-llm: Probabilistic path planning using
large language model for autonomous robot naviga-
tion.
Liang, J., Huang, W., Xia, F., Xu, P., Hausman, K., Ichter,
B., Florence, P., and Zeng, A. (2023). Code as poli-
cies: Language model programs for embodied control.
Ma, Y. J., Liang, W., Wang, G., Huang, D.-A., Bastani, O.,
Jayaraman, D., Zhu, Y., Fan, L., and Anandkumar, A.
Embodied AI in Mobile Robot Simulation with EyeSim: Coverage Path Planning with Large Language Models
191