
tion. In Proceedings of the 2007 Joint Conference
on Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), pages 858–867, Prague, Czech Re-
public. Association for Computational Linguistics.
Camara, R. C., Cuzzocrea, A., Grasso, G. M., Leung, C. K.,
Powell, S. B., Souza, J., and Tang, B. (2018). Fuzzy
logic-based data analytics on predicting the effect of
hurricanes on the stock market. In 2018 IEEE Inter-
national Conference on Fuzzy Systems, FUZZ-IEEE
2018, Rio de Janeiro, Brazil, July 8-13, 2018, pages
1–8. IEEE.
Cambria, E., Liu, Q., Decherchi, S., Xing, F., and Kwok,
K. (2022). SenticNet 7: A commonsense-based
neurosymbolic AI framework for explainable senti-
ment analysis. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
3829–3839, Marseille, France. European Language
Resources Association.
Chatterjee, R., Negri, M., Turchi, M., Federico, M., Spe-
cia, L., and Blain, F. (2017). Guiding neural machine
translation decoding with external knowledge. In Pro-
ceedings of the Second Conference on Machine Trans-
lation, pages 157–168, Copenhagen, Denmark. Asso-
ciation for Computational Linguistics.
Chaudhury, S., Kimura, D., Talamadupula, K., Tatsubori,
M., Munawar, A., and Tachibana, R. (2020). Boot-
strapped q-learning with context relevant observation
pruning to generalize in text-based games. arXiv
preprint arXiv:2009.11896.
Chaudhury, S., Sen, P., Ono, M., Kimura, D., Tatsubori,
M., and Munawar, A. (2021a). Neuro-symbolic ap-
proaches for text-based policy learning. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 3073–3078.
Chaudhury, S., Sen, P., Ono, M., Kimura, D., Tatsubori,
M., and Munawar, A. (2021b). Neuro-symbolic ap-
proaches for text-based policy learning. In Proceed-
ings of the 2021 Conference on Empirical Methods in
Natural Language Processing, pages 3073–3078, On-
line and Punta Cana, Dominican Republic. Associa-
tion for Computational Linguistics.
Cuzzocrea, A. (2006). Combining multidimensional user
models and knowledge representation and manage-
ment techniques for making web services knowledge-
aware. Web Intelligence and Agent Systems: An inter-
national journal, 4(3):289–312.
Deng, S., Zhang, N., Li, L., Chen, H., Tou, H., Chen,
M., Huang, F., and Chen, H. (2021). Ontoed: Low-
resource event detection with ontology embedding.
arXiv preprint arXiv:2105.10922.
Feng, Y., Yang, X., Zhu, X., and Greenspan, M. (2022a).
Neuro-symbolic natural logic with introspective re-
vision for natural language inference. Transactions
of the Association for Computational Linguistics,
10:240–256.
Feng, Y., Yang, X., Zhu, X., and Greenspan, M. (2022b).
Neuro-symbolic natural logic with introspective re-
vision for natural language inference. Transactions
of the Association for Computational Linguistics,
10:240–256.
Gupta, K., Ghosal, T., and Ekbal, A. (2021). A neuro-
symbolic approach for question answering on research
articles. In Proceedings of the 35th Pacific Asia Con-
ference on Language, Information and Computation,
pages 40–49, Shanghai, China. Association for Com-
putational Lingustics.
Hale, J., Dyer, C., Kuncoro, A., and Brennan, J. (2018).
Finding syntax in human encephalography with beam
search. In Proceedings of the 56th Annual Meeting
of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 2727–2736, Melbourne,
Australia. Association for Computational Linguistics.
Hamilton, K., Nayak, A., Bo
ˇ
zi
´
c, B., and Longo, L. (2022).
Is neuro-symbolic ai meeting its promises in natural
language processing? a structured review. Semantic
Web, (Preprint):1–42.
Howlader, P., Pal, K. K., Cuzzocrea, A., and Kumar, S.
D. M. (2018). Predicting facebook-users’ personality
based on status and linguistic features via flexible re-
gression analysis techniques. In Proceedings of the
33rd Annual ACM Symposium on Applied Comput-
ing, SAC 2018, Pau, France, April 09-13, 2018, pages
339–345. ACM.
Jiang, H., Gurajada, S., Lu, Q., Neelam, S., Popa, L., Sen,
P., Li, Y., and Gray, A. (2021a). Lnn-el: A neuro-
symbolic approach to short-text entity linking. arXiv
preprint arXiv:2106.09795.
Jiang, H., Gurajada, S., Lu, Q., Neelam, S., Popa, L., Sen,
P., Li, Y., and Gray, A. (2021b). LNN-EL: A neuro-
symbolic approach to short-text entity linking. In Pro-
ceedings of the 59th Annual Meeting of the Associa-
tion for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pages 775–787, On-
line. Association for Computational Linguistics.
Kimura, D., Ono, M., Chaudhury, S., Kohita, R., Wachi,
A., Agravante, D. J., Tatsubori, M., Munawar, A.,
and Gray, A. (2021a). Neuro-symbolic reinforce-
ment learning with first-order logic. In Proceedings
of the 2021 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3505–3511, Online
and Punta Cana, Dominican Republic. Association for
Computational Linguistics.
Kimura, D., Ono, M., Chaudhury, S., Kohita, R., Wachi,
A., Agravante, D. J., Tatsubori, M., Munawar, A.,
and Gray, A. (2021b). Neuro-symbolic reinforce-
ment learning with first-order logic. arXiv preprint
arXiv:2110.10963.
Langone, Rocco and Cuzzocrea, Alfredo and Skantzos,
Nikolaos (2020). Interpretable Anomaly Prediction:
Predicting anomalous behavior in industry 4.0 set-
tings via regularized logistic regression tools. Else-
vier, Journal Data & Knowledge Engineering, vol.130
pages 101-850.
Leung, C. K., Braun, P., and Cuzzocrea, A. (2019). Ai-
based sensor information fusion for supporting deep
supervised learning. Sensors, 19(6):1345.
Liu, Y. and Lapata, M. (2019). Text summarization with
pretrained encoders. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Conference
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
280