
REFERENCES
Allaart, C. G., Keyser, B., Bal, H., and Van Halteren, A.
(2022). Vertical split learning-an exploration of pre-
dictive performance in medical and other use cases. In
2022 International Joint Conference on Neural Net-
works (IJCNN), pages 1–8. IEEE.
Anees, A., Field, M., and Holloway, L. (2024). A neural
network-based vertical federated learning framework
with server integration. Engineering Applications of
Artificial Intelligence, 138:109276.
Antunes, R. S., Andr
´
e da Costa, C., K
¨
uderle, A., Yari,
I. A., and Eskofier, B. (2022). Federated learning for
healthcare: Systematic review and architecture pro-
posal. ACM Transactions on Intelligent Systems and
Technology (TIST), 13(4):1–23.
Aumasson, J.-P., Meier, W., Phan, R. C.-W., Henzen, L.,
Aumasson, J.-P., Meier, W., Phan, R. C.-W., and Hen-
zen, L. (2014). Blake2. The Hash Function BLAKE,
pages 165–183.
Beutel, D. J., Topal, T., Mathur, A., Qiu, X., Fernandez-
Marques, J., Gao, Y., Sani, L., Kwing, H. L., Par-
collet, T., Gusm
˜
ao, P. P. d., and Lane, N. D. (2020).
Flower: A friendly federated learning research frame-
work. arXiv preprint arXiv:2007.14390.
De Bruin, J. (2019). Python Record Linkage Toolkit: A
toolkit for record linkage and duplicate detection in
Python.
Fadillah, M. I., Aminuddin, A., Rahardi, M., Abdulloh,
F. F., Hartatik, H., and Asaddulloh, B. P. (2023). Dia-
betes diagnosis and prediction using data mining and
machine learning techniques. In 2023 International
Workshop on Artificial Intelligence and Image Pro-
cessing (IWAIIP), pages 110–115. IEEE.
Gregg, F. and Eder, D. (2022). Dedupe. https://github.com/
dedupeio/dedupe.
Guo, Y., Liu, F., Cai, Z., Chen, L., and Xiao, N. (2020).
Feel: A federated edge learning system for efficient
and privacy-preserving mobile healthcare. In Pro-
ceedings of the 49th International Conference on Par-
allel Processing, pages 1–11.
Hardy, S., Henecka, W., Ivey-Law, H., Nock, R., Patrini, G.,
Smith, G., and Thorne, B. (2017). Private federated
learning on vertically partitioned data via entity reso-
lution and additively homomorphic encryption. ArXiv
Preprint ArXiv:1711.10677.
Li, A., Huang, J., Jia, J., Peng, H., Zhang, L., Tuan, L. A.,
Yu, H., and Li, X.-Y. (2023). Efficient and privacy-
preserving feature importance-based vertical feder-
ated learning. IEEE Transactions on Mobile Comput-
ing.
Linacre, R., Lindsay, S., Manassis, T., Slade, Z., Hep-
worth, T., Kennedy, R., and Bond, A. (2022). Splink:
Free software for probabilistic record linkage at scale.
International Journal of Population Data Science,
7(3):1794.
Mali, B., Saha, S., Brahma, D., Pinninti, R., and Singh, P. K.
(2023). Towards building a global robust model for
heart disease detection. SN Computer Science, 4(5):1–
12.
McMahan, B., Moore, E., Ramage, D., Hampson, S., and
y Arcas, B. A. (2017). Communication-efficient learn-
ing of deep networks from decentralized data. In Ar-
tificial intelligence and statistics, pages 1273–1282.
PMLR.
Mustafa, M. (2023). Diabetes prediction dataset.
https://www.kaggle.com/datasets/iammustafatz/
diabetes-prediction-dataset.
Nock, R., Hardy, S., Henecka, W., Ivey-Law, H., Patrini,
G., Smith, G., and Thorne, B. (2018). Entity resolu-
tion and federated learning get a federated resolution.
ArXiv Preprint ArXiv:1803.04035.
Riedel, P., von Schwerin, R., Schaudt, D., Hafner, A., and
Sp
¨
ate, C. (2023). ResNetFed: Federated deep learning
architecture for privacy-preserving pneumonia detec-
tion from COVID-19 chest radiographs. Journal of
Healthcare Informatics Research, pages 1–22.
Rodriguez-Henriquez, F., Perez, A. D., Saqib, N. A., and
Koc, C. K. (2007). A brief introduction to modern
cryptography. Cryptographic Algorithms on Recon-
figurable Hardware, pages 7–33.
Romanini, D., Hall, A. J., Papadopoulos, P., Titcombe, T.,
Ismail, A., Cebere, T., Sandmann, R., Roehm, R., and
Hoeh, M. A. (2021). Pyvertical: A vertical federated
learning framework for multi-headed splitnn. arXiv
preprint arXiv:2104.00489.
Schnell, R., Bachteler, T., and Reiher, J. (2009). Privacy-
preserving record linkage using bloom filters. BMC
medical informatics and decision making, 9:1–11.
Sun, C., van Soest, J., Koster, A., Eussen, S. J., Schram,
M. T., Stehouwer, C. D., Dagnelie, P. C., and Dumon-
tier, M. (2022). Studying the association of diabetes
and healthcare cost on distributed data from the maas-
tricht study and statistics netherlands using a privacy-
preserving federated learning infrastructure. Journal
of Biomedical Informatics, 134:104194.
Sun, J., Xu, Z., Yang, D., Nath, V., Li, W., Zhao, C., Xu, D.,
Chen, Y., and Roth, H. R. (2023). Communication-
efficient vertical federated learning with limited over-
lapping samples. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
5203–5212.
Tasci, E., Zhuge, Y., Kaur, H., Camphausen, K., and
Krauze, A. V. (2022). Hierarchical voting-based fea-
ture selection and ensemble learning model scheme
for glioma grading with clinical and molecular charac-
teristics. International Journal of Molecular Sciences,
23(22):14155.
Tasci, Erdal, Camphausen, Kevin, Krauze, Andra Valentina,
and Zhuge, Ying (2022). Glioma Grading Clinical and
Mutation Features. UCI Machine Learning Reposi-
tory. DOI: https://doi.org/10.24432/C5R62J.
Vepakomma, P., Gupta, O., Swedish, T., and Raskar, R.
(2018). Split learning for health: Distributed deep
learning without sharing raw patient data. arXiv
preprint arXiv:1812.00564.
Wolberg, W. (1990). Breast Cancer Wisconsin (Orig-
inal). UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5HP4Z.
SECRYPT 2025 - 22nd International Conference on Security and Cryptography
24