supervised learning techniques. International Journal of
Emerging Technologies in Learning (iJET), 14(14), 4–
12. https://doi.org/10.3991/ijet.v14i14.10310
Jamal, K. M., & Kamioka, E. (2019). Emotions detection
scheme using facial skin temperature and heart rate
variability. MATEC Web of Conferences, 277, 02037.
https://doi.org/10.1051/matecconf/201927702037
Kanna, S., Von Rosenberg, W., Goverdovsky, V.,
Constantinides, A. G., & Mandic, D. P. (2018). Bringing
wearable sensors into the classroom: A participatory
approach. IEEE Signal Processing Magazine, 35(3),
110–116. https://doi.org/10.1109/MSP.2018.2806418
Katmada, A., Chatzakis, M., Apostolidis, H., Mavridis, A., &
Stylianidis, P. (2015). An adaptive serious neuro-game
using a mobile version of a bio-feedback device. In
Proceedings of the International Conference on
Interactive Mobile Communication Technologies and
Learning (IMCL) (pp. 416–420). Thessaloniki, Greece:
IEEE. https://doi.org/10.1109/IMCTL.2015.7359633
Khan, T. H., Villanueva, I., Vicioso, P., & Husman, J. (2019).
Exploring relationships between electrodermal activity,
skin temperature, and performance. Proceedings -
Frontiers in Education Conference, FIE.
https://doi.org/10.1109/FIE43999.2019.9028625
Lee, H., Mandalapu, V., Kleinsmith, A., & Gong, J. (2020).
Distinguishing anxiety subtypes of English language
learners towards augmented emotional clarity. In I. I.
Bittencourt et al. (Eds.), AIED 2020, LNAI 12164 (pp.
157–161). Springer Nature Switzerland AG.
https://doi.org/10.1007/978-3-030-52240-7_29
Lee, V. R., Fischback, L., & Cain, R. (2019). A wearables-
based approach to detect and identify momentary
engagement in afterschool Makerspace programs.
Contemporary Educational Psychology, 59, 101789.
https://doi.org/10.1016/j.cedpsych.2019.101789
Loderer, K., Pekrun, R., & Lester, J. C. (2020). Beyond cold
technology: A systematic review and meta-analysis on
emotions in technology-based learning environments.
Learning and Instruction, 70, 101162.
https://doi.org/10.1016/j.learninstruc.2018.08.002
Lu, Y., Zhang, S., Zhang, Z., Xiao, W., & Yu, S. (2017). A
framework for learning analytics using commodity
wearable devices. Sensors, 17(6), 1382.
https://doi.org/10.3390/s17061382
Lui, Y., & Du, S. (2018). Psychological stress level detection
based on electrodermal activity. Behavioural Brain
Research, 341, 50–53. https://doi.org/10.1016/j.bbr.20
17.12.021
Malathi, D., Dorathi Jayaseeli, J. D., Madhuri, S., &
Senthilkumar, K. (2018). Electrodermal activity-based
wearable device for drowsy drivers. Journal of Physics:
Conference Series, 1000. https://doi.org/10.1088/1742-
6596/1000/1/012048
Moura, R., Richetto, M., Luche, D., Tozi, L., & Silva, M.
(2022). New professional competencies and skills
leaning towards Industry 4.0. In Proceedings of the 14th
International Conference on Computer Supported
Education - Volume 2: CSEDU (pp. 622–630).
SciTePress. https://doi.org/10.5220/0011047300003182
Naicker, N., Adeliyi, T., & Wing, J. (2020). Linear support
vector machines for prediction of student performance in
school-based education. Mathematical Problems in
Engineering, 2020, 1–7. https://doi.org/10.1155/2020/
4761468
Nourbakhsh, N., Wang, Y., Chen, F., & Calvo, R. A. (2012).
Using galvanic skin response for cognitive load
measurement in arithmetic and reading tasks. In
Proceedings of OZCHI 2012: 24–30 November 2012,
Melbourne, Victoria, Australia (pp. 420–429).
Melbourne: ACM. https://doi.org/10.1145/2414536.241
4602
Ofori, F., Maina, E., & Gitonga, R. (2020). Using machine
learning algorithms to predict students’ performance and
improve learning outcome: A literature-based review.
Journal of Information and Technology, 4(1), 23–45.
Pang, Y., Judd, N., O’Brien, J., & Ben-Avie, M. (2017).
Predicting students’ graduation outcomes through
support vector machines. In Proceedings of the IEEE
Frontiers in Education Conference (FIE) (pp. 1–8).
Indianapolis, IN, USA: IEEE. https://doi.org/10.1109/
FIE.2017.8190666
Pavani, M., Teja, A. R., Neelima, A., Bhavishya, G., &
Sukrutha, D. S. (2017). Prediction of student outcome in
educational sector by using decision tree. International
Journal for Technological Research in Engineering,
4(8), 1191–1193.
Pérez, F. de A., Santos-Gago, J. M., Caeiro-Rodríguez, M.,
& Fernández Iglesias, M. J. (2018). Evaluation of
commercial-off-the-shelf wrist wearables to estimate
stress on students. Journal of Visualized Experiments,
136, e57590. https://doi.org/10.3791/57590
Pijeira-Díaz, H. J., Drachsler, H., Kirschner, P. A., & Järvelä,
S. (2018). Profiling sympathetic arousal in a physics
course: How active are students? Journal of Computer
Assisted Learning, 34(5), 1–12. https://doi.org/10.1111/
jcal.12271
Poh, M. Z., Swenson, N. C., & Picard, R. W. (2010). A
wearable sensor for unobtrusive, long-term assessment of
electrodermal activity. IEEE Transactions on Biomedical
Engineering, 57(5), 1243–1252. https://doi.org/10.1109/
TBME.2009.2038487
Polyzou, A., & Karypis, G. (2023). Feature extraction for
classifying students based on their academic
performance. In Proceedings of the 11th International
Conference on Educational Data Mining (pp. 356–362).
Potter, L., Scallon, J., Swegle, D., Gould, T., & Okudan
Kremer, G. (2019). Establishing a link between
electrodermal activity and classroom engagement. In
IISE Annual Conference 2019 Proceedings (pp. 988–
993). Ames, IA: Industrial and Manufacturing Systems
Engineering, Iowa State University.
Quintero, H. F. P., & Bolkhovsky, J. B. (2019). Machine
learning models for the identification of cognitive tasks
using autonomic reactions from heart rate variability and
electrodermal activity. Behavioral Sciences.
https://doi.org/10.3390/bs9040045
Quintero, H. F. P., Florian, J. P., & Orjuela-Cañón, A. D.
(2016b). Highly sensitive index of sympathetic activity
based on time-frequency spectral analysis of