enhance decision-support systems and improve the
adaptability of combat models to modern, complex
warfare scenarios.
REFERENCES
Anderson, A.D., Bryan, P., Cannon, C., Day, B., Jeffrey, J.
(1972). An Experiment in Combat Simulation: The
Battle of Cambrai, 1917. The Journal of
Interdisciplinary History. The MIT Press, 2(3), 229–47.
https://doi.org/10.2307/202286.
Alberts, D. S., Huber, R. K., & Moffat, J. (2010). The
NATO net enabled capability command and control
maturity model. Technical report, Office of the
Assistant Secretary of Defense, Command and Control
Research Program, Washington, DC.
Tolk, A. (2012). Engineering Principles of Combat
Modeling and Distributed Simulation, Willey, 1–22.
DOI:10.1002/9781118180310
Taylor, J. G. (1974). Lanchester‐type models of warfare and
optimal control. Naval Research Logistics
Quarterly, 21(1), 79-106. https://doi.org/10.1002/
nav.3800210107
Cangiotti, N., Capolli, M., & Sensi, M. (2023). A
generalization of unaimed fire Lanchester’s model in
multi-battle warfare. Operational Research, 23(2), 38.
https://doi.org/10.1007/s12351-023-00776-8
Keane., T. (2011). Combat modelling with partial
differential equations. Applied Mathematical
Modelling, DOI: 10.1016/J.APM.2010.11.057
Kress, M., Caulkins, J.P., Feichtinger, G., Grass, D., Seidl,
A. (2018). Lanchester model for three-way combat,
European Journal of Operational Research,
https://doi.org/10.1016/j.ejor.2017.07.026 .
Founta K., Zachilas L. (2023). Mathematical modeling of
strategic behavior: the Battle of Midway, 1942. The
Journal of Defense Modeling and Simulation. 0(0).
doi:10.1177/15485129231160182
Fox, W. P. (2010). Discrete Combat Models. International
Journal of Operations Research and Information
Systems, 1(1), 16–34. doi:10.4018/joris.2010101302
Guckenheimer, J., (1979). Sensitive dependence to initial
conditions for one dimensional maps.Communications
in Mathematical Physics, 70(2), 133-160.
Jiang, R., Yang, M., Wang, S., Chao, T. (2020). An
improved whale optimization algorithm with armed
force program and strategic adjustment, Applied
Mathematical Modelling. https://doi.org/10.1016/
j.apm.2020.01.002.
Koehler, M. T., Bricio-Neto, J. L., Page, E. H., & Tolk, A.
(2024). Applying complex adaptive systems research
results to combat simulations of the generation-after-
next. The Journal of Defense Modeling and Simulation.
https://doi.org/10.1177/15485129241233608
Lee, D., Kim, M.J., Ahn, C.W. (2021) Predicting combat
outcomes and optimizing armies in StarCraft II by deep
learning, Expert Systems with Applications.
https://doi.org/10.1016/j.eswa.2021.115592.
Mirjalili, S., Lewis, A. (2016). The whale optimization
algorithm, Advances in Engineering Software.
https://doi.org/10.1016/j.advengsoft.2016.01.008.
Founta, K. and Zachilas, L. (2021). Dynamical Systems
Theory Compared to Game Theory: The Case of the
Salamis’s Battle. Applied Mathematics, 12, 882-899.
https://doi.org/10.4236/am.2021.1210058
Peng, R., Zhai, Q., Levitin, G. (2016). Defending a single
object against an attacker trying to detect a subset of
false targets. Reliability Engineering & System Safety,
https://doi.org/10.1016/j.ejor.2016.06.059
Protopopescu., V, Santoro., R.T., Dockery, J. (1989).
Combat modeling with partial differential equations.
European Journal of Operational Research, DOI:
10.1016/0377-2217(89)90102-1
Smith, M.J., Price, G.R. (1973). The Logic of Animal
Conflict. Nature, 246, 15-18. https://doi.org/10.
1038/246015a0
Scheinerman, E. R. (2012). Invitation to dynamical systems.
Dover Publications. ISBN: 978-0486485942.
Robinson, R. C. (2012). An introduction to dynamical
systems: Continuous and Discrete. American
Mathematical Society, 2
nd
Edition, Vol.19, ISBN: 978-
0-8218-9135-3.
Zhai, Q., Ye, Z.-S., Peng, R., Wang, W. (2017). Defense
and attack of performance-sharing common bus
systems. European Journal of Operational Research,
DOI: 10.1016/j.ejor.2016.06.059
Zhang, L. (2023). Combat modelling using Lanchester
equations. International Journal of Mathematical
Education in Science and Technology, 55(2), 224–234.
https://doi.org/10.1080/0020739X.2023.2242863.