
client selection strategy that balances equity and effi-
ciency. With further refinement and rigorous evalua-
tion, it has the potential to become a standard practice
in building responsible and trustworthy decentralized
machine learning systems.
ACKNOWLEDGEMENTS
The authors acknowledge the use of Copilot (Mi-
crosoft, [https://m365.cloud.microsoft/chat]) to sum-
marize the initial notes and to proofread the final
draft. The authors have reviewed and validated all
AI-generated content for accuracy and coherence.
REFERENCES
Banse, A., Kreischer, J., and i J
¨
urgens, X. O. (2024). Fed-
erated learning with differential privacy.
Bickler, P., Feiner, J., and Severinghaus, J. (2005). Effects
of Skin Pigmentation on Pulse Oximeter Accuracy at
Low Saturation. Anesthesiology, 102(4):715–719.
Bouacida, N., Hou, J., Zang, H., and Liu, X. (2020). Adap-
tive federated dropout: Improving communication ef-
ficiency and generalization for federated learning.
Buolamwini, J. and Gebru, T. (2018). Gender shades: In-
tersectional accuracy disparities in commercial gender
classification. In Friedler, S. A. and Wilson, C., edi-
tors, Proceedings of the 1st Conference on Fairness,
Accountability and Transparency, volume 81 of Pro-
ceedings of Machine Learning Research, pages 77–
91. PMLR.
Cheng, S.-L., Yeh, C.-Y., Chen, T.-A., Pastor, E., and
Chen, M.-S. (2024). Fedgcr: Achieving performance
and fairness for federated learning with distinct client
types via group customization and reweighting. In
Proceedings of the AAAI Conference on Artificial In-
telligence, volume 38, pages 11498–11506.
Dastin, J. (2022). Amazon scraps secret ai recruiting tool
that showed bias against women. In Ethics of data and
analytics, pages 296–299. Auerbach Publications.
Duan, Y., Tian, Y., Chawla, N., and Lemmon, M. (2024).
Post-fair federated learning: Achieving group and
community fairness in federated learning via post-
processing. arXiv preprint arXiv:2405.17782.
Dwivedi, Y. K., Hughes, L., Ismagilova, E., Aarts, G.,
Coombs, C., Crick, T., Duan, Y., Dwivedi, R., Ed-
wards, J., Eirug, A., Galanos, V., Ilavarasan, P. V.,
Janssen, M., Jones, P., Kar, A. K., Kizgin, H., Kro-
nemann, B., Lal, B., Lucini, B., Medaglia, R., Le
Meunier-FitzHugh, K., Le Meunier-FitzHugh, L. C.,
Misra, S., Mogaji, E., Sharma, S. K., Singh, J. B.,
Raghavan, V., Raman, R., Rana, N. P., Samothrakis,
S., Spencer, J., Tamilmani, K., Tubadji, A., Walton,
P., and Williams, M. D. (2021). Artificial intelligence
(ai): Multidisciplinary perspectives on emerging chal-
lenges, opportunities, and agenda for research, prac-
tice and policy. International Journal of Information
Management, 57:101994.
Dwork, C. and Roth, A. (2014). The algorith-
mic foundations of differential privacy. Founda-
tions and Trends®in Theoretical Computer Science,
9(3–4):211–407.
Fu, L., Zhang, H., Gao, G., Zhang, M., and Liu, X.
(2023). Client selection in federated learning: Prin-
ciples, challenges, and opportunities.
Jaemin Shin, Yuanchun Li, Y. L. and Lee, S. (2022).
Sample selection with deadline control for efficient
federated learning on heterogeneous clients. CoRR,
abs/2201.01601.
Jiang, Z., Xu, Y., Xu, H., Wang, Z., and Qian, C. (2022).
Adaptive control of client selection and gradient com-
pression for efficient federated learning.
Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Ben-
nis, M., Bhagoji, A. N., Bonawitz, K. A., Charles, Z.,
Cormode, G., Cummings, R., D’Oliveira, R. G. L.,
Rouayheb, S. E., Evans, D., Gardner, J., Garrett, Z.,
Gasc
´
on, A., Ghazi, B., Gibbons, P. B., Gruteser, M.,
Harchaoui, Z., He, C., He, L., Huo, Z., Hutchinson,
B., Hsu, J., Jaggi, M., Javidi, T., Joshi, G., Kho-
dak, M., Kone
ˇ
cn
´
y, J., Korolova, A., Koushanfar, F.,
Koyejo, S., Lepoint, T., Liu, Y., Mittal, P., Mohri, M.,
Nock, R.,
¨
Ozg
¨
ur, A., Pagh, R., Raykova, M., Qi, H.,
Ramage, D., Raskar, R., Song, D., Song, W., Stich,
S. U., Sun, Z., Suresh, A. T., Tram
`
er, F., Vepakomma,
P., Wang, J., Xiong, L., Xu, Z., Yang, Q., Yu, F. X., Yu,
H., and Zhao, S. (2019). Advances and open problems
in federated learning. CoRR, abs/1912.04977.
Li, J., Zhu, T., Ren, W., and Raymond, K.-K. (2023).
Improve individual fairness in federated learning
via adversarial training. Computers & Security,
132:103336.
Li, T., Sanjabi, M., Beirami, A., and Smith, V. (2020). Fair
resource allocation in federated learning.
Lindell, Y. (2020). Secure multiparty computation (MPC).
Cryptology ePrint Archive, Paper 2020/300.
McMahan, H. B., Moore, E., Ramage, D., Hampson, S.,
and y Arcas, B. A. (2016). Communication-efficient
learning of deep networks from decentralized data.
Mohri, M., Sivek, G., and Suresh, A. T. (2019). Agnostic
federated learning.
Nishio, T. and Yonetani, R. (2018). Client selection for fed-
erated learning with heterogeneous resources in mo-
bile edge. CoRR, abs/1804.08333.
Nishio, T. and Yonetani, R. (2019). Client selection for fed-
erated learning with heterogeneous resources in mo-
bile edge. In ICC 2019 - 2019 IEEE International
Conference on Communications (ICC), pages 1–7.
Papadaki, A., Martinez, N., Bertran, M., Sapiro, G., and
Rodrigues, M. (2021). Federating for learning group
fair models.
Rafi, T. H., Noor, F. A., Hussain, T., and Chae, D.-K.
(2024). Fairness and privacy preserving in federated
learning: A survey. Information Fusion, 105:102198.
Roy, S., Sharma, H., and Salekin, A. (2024). Fairness with-
out demographics in human-centered federated learn-
ing.
DATA 2025 - 14th International Conference on Data Science, Technology and Applications
272