
English handwritten images based on graph models and 
ambiguous  zone  analysis.  Expert  Systems  with 
Applications,  64,  352–364. 
https://doi.org/10.1016/j.eswa.2016.08.004 
  Elbaati,  A.,  Hamdi,  Y.,  &  Alimi,  A.  M.  (2019). 
Handwriting  recognition  based  on  temporal  order 
restored  by  the  end-to-end  system.  In  2019 
International  Conference  on  Document  Analysis  and 
Recognition  (ICDAR)  (pp.  1231–1236).  IEEE. 
https://doi.org/10.1109/ICDAR.2019.00199 
 Elbaati,  A.,  Kherallah,  M.,  Ennaji,  A.,  &  Alimi,  A.  M. 
(2009).  Temporal  order  recovery  of  the  scanned 
handwriting. In 2009 10th International Conference on 
Document Analysis and Recognition (pp. 1116–1120). 
IEEE. https://doi.org/10.1109/ICDAR.2009.232   
Gautam,  K.,  &  Singh,  S.  (2022).  Neural  Network  to 
Recognize Handwriting Objects.  
Jin, Y., Ran, T., Yuan, L., Lv, K., Wang, G., & Xiao, W. 
(2024). Bagging no modelo semi-Markov oculto para 
geração de trajetória de robô de escrita manual. J. Intell. 
Fuzzy  Syst.,  46,  6325-6335. 
https://doi.org/10.3233/jifs-237275  
KumarBhunia, A., Bhowmick, A., Bhunia, A. K., Konwer, 
A.,  Banerjee,  P.,  Roy,  P.  P.,  &  Pal,  U.  (2018). 
Handwriting trajectory recovery using end-to-end deep 
encoder-decoder  network. In  2018  24th  International 
Conference on Pattern Recognition (ICPR) (pp. 3639–
3644).  IEEE. 
https://doi.org/10.1109/ICPR.2018.8545898 
  LeCun,  Y.,  Bengio,  Y.,  &  Hinton,  G.  (2015).  Deep 
learning.  Nature,  521(7553),  436–444. 
https://doi.org/10.1038/nature14539 
Nagoya,  T.,  &  Fujioka,  H.  (2011).  A  graph  theoretic 
algorithm for recovering drawing order of multi-stroke 
handwritten  images.  In  2011  Third  International 
Conference  on  Intelligent  Networking  and 
Collaborative  Systems  (pp.  569–574).  IEEE. 
https://doi.org/10.1109/INCoS.2011.144 
Nguyen,  V.,  &  Blumenstein,  M.  (2010).  Techniques  for 
static  handwriting  trajectory  recovery:  A  survey.  In 
Proceedings of the 9th IAPR International Workshop 
on Document Analysis Systems (pp. 463–470). ACM. 
https://doi.org/10.1145/1815330.1815382 
Noubigh,  Z.,  &  Kherallah,  M.  (2017).  A  survey  on 
handwriting  recognition  based  on  the  trajectory 
recovery technique. In 2017 1st International Workshop 
on  Arabic  Script  Analysis  and  Recognition  (ASAR) 
(pp.  69–73).  IEEE. 
https://doi.org/10.1109/ASAR.2017.8067766 
  Plamondon, R., & Srihari, S. N. (2000). Online and off-
line handwriting recognition: A comprehensive survey. 
IEEE  Transactions  on Pattern  Analysis and  Machine 
Intelligence,  22(1),  63–84. 
https://doi.org/10.1109/34.824821 
  Rousseau,  L.,  Anquetil,  E.,  &  Camillerapp,  J.  (2005). 
Recovery  of  a  drawing  order  from  off-line  isolated 
letters  dedicated  to  on-line  recognition.  In  Eighth 
International  Conference  on  Document  Analysis  and 
Recognition  (ICDAR’05)  (pp.  1121–1125).  IEEE. 
https://doi.org/10.1109/ICDAR.2005.123 
  Sharma,  A.  (2013).  Recovery  of  drawing  order  in 
handwritten  digit  images.  In  2013  IEEE  Second 
International  Conference  on  Image  Information 
Processing  (ICIIP-2013)  (pp.  437–441).  IEEE. 
https://doi.org/10.1109/ICIIP.2013.6707642 
  Sharma,  A.  (2015).  A  combined  static  and  dynamic 
feature extraction technique to recognize handwritten 
digits.  Vietnam  Journal  of  Computer  Science,  2(3), 
133–142. https://doi.org/10.1007/s40595-015-0041-3 
 Sharma,  N., &  Agarwal, P.  (2018). Offline  handwriting 
recognition using neural networks.  
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on 
image data augmentation for deep learning. Journal of 
Big Data, 6(1), 60. https://doi.org/10.1186/s40537-019-
0197-0 
Viard-Gaudin, C., Lallican, P. M., Knerr, S., & Binter, P. 
(1999).  The  ireste  on/off  (ironoff)  dual  handwriting 
database.  In  Proceedings  of  the  International 
Conference  on  Document  Analysis  and  Recognition 
(pp.  455–458). 
https://doi.org/10.1109/ICDAR.1999.791781 
Wang, Y., Sonogashira, M., Hashimoto, A., & Iiyama, M. 
(2019).  Two-stage  fully  convolutional  networks  for 
stroke  recovery of  handwritten Chinese  character.  In 
Asian  Conference  on  Pattern  Recognition  (pp.  321–
334).  Springer.  https://doi.org/10.1007/978-3-030-
04793-4_26 
 Xiong, Y., Dai, Y., & Meng, D. (2023). Deep Frame-Point 
Sequence  Consistent  Network  for  Handwriting 
Trajectory  Recovery.  2023  IEEE  29th  International 
Conference  on  Parallel  and  Distributed  Systems 
(ICPADS),  2151-2158. 
https://doi.org/10.1109/ICPADS60453.2023.00291 
  Zhang, X.-Y., Bengio, Y., & Liu, C.-L. (2017). Online and 
offline  handwritten  Chinese  character  recognition:  A 
comprehensive  study  and  new  benchmark.  Pattern 
Recognition,  61,  348–360. 
https://doi.org/10.1016/j.patcog.2016.07.004 
  Zhao,  B.,  Yang,  M.,  &  Tao,  J.  (2019).  Drawing  order 
recovery  for  handwriting  Chinese  characters.  In 
ICASSP 2019-2019 IEEE International Conference on 
Acoustics,  Speech  and  Signal  Processing  (ICASSP) 
(pp.  3227–3231).  IEEE. 
https://doi.org/10.1109/ICASSP.2019.8682696 
 
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
862