
Hierarchical  Deep-Fusion  Learning  Network. 
Proceedings Copyright, 381, 388. 
Fidas, C. A., & Lyras, D. (2023). A review of EEG-based 
user  authentication:  trends  and  future  research 
directions. IEEE Access, 11, 22917-22934. 
Gao, Y., Fu, X., Ouyang, T., & Wang, Y. (2022). EEG-
GCN:  spatio-temporal  and  self-adaptive  graph 
convolutional networks for single and multi-view EEG-
based  emotion  recognition. IEEE  Signal  Processing 
Letters, 29, 1574-1578. 
Gopal, S. R. K., & Shukla, D. (2021, August). Concealable 
biometric-based continuous user authentication system 
an EEG induced deep learning model. In 2021  IEEE 
International  Joint  Conference  on  Biometrics 
(IJCB) (pp. 1-8). IEEE. 
Jia, Z., Lin, Y., Wang, J., Ning, X., He, Y., Zhou, R., ... & 
Li-wei,  H.  L.  (2021).  Multi-view  spatial-temporal 
graph  convolutional  networks  with  domain 
generalization  for  sleep  stage  classification. IEEE 
Transactions  on  Neural  Systems  and  Rehabilitation 
Engineering, 29, 1977-1986. 
Khosla,  A.,  Khandnor,  P.,  &  Chand,  T.  (2020).  A 
comparative  analysis  of  signal  processing  and 
classification methods for different applications based 
on  EEG  signals. Biocybernetics  and  Biomedical 
Engineering, 40(2), 649-690. 
Kuncheva,  L.  I.  (2014). Combining  pattern  classifiers: 
methods and algorithms. John Wiley & Sons. 
Mane, R., Robinson, N., Vinod, A. P., Lee, S. W., & Guan, 
C. (2020, July). A multi-view CNN with novel variance 
layer for motor imagery brain computer interface. In 
2020 42nd annual international conference of the IEEE 
engineering  in  medicine  &  biology  society  (EMBC) 
(pp. 2950-2953). IEEE. 
Mueller, S., Wang, D., Fox, M. D., Yeo, B. T., Sepulcre, J., 
Sabuncu,  M.  R.,  ...  &  Liu,  H.  (2013).  Individual 
variability in functional connectivity architecture of the 
human brain. Neuron, 77(3), 586-595. 
Nakamura, T., Goverdovsky, V., & Mandic, D. P. (2017). 
In-ear  EEG  biometrics  for  feasible  and  readily 
collectable  real-world  person  authentication. IEEE 
Transactions  on  Information  Forensics  and 
Security, 13(3), 648-661. 
Oh,  S.  L.,  Hagiwara,  Y.,  Raghavendra,  U.,  Yuvaraj,  R., 
Arunkumar, N.,  Murugappan,  M., & Acharya, U.  R. 
(2020).  A  deep  learning  approach  for  Parkinson’s 
disease diagnosis from EEG signals. Neural Computing 
and Applications, 32, 10927-10933. 
Oztemel, M. E., & Soysal, Ö. M. (2024, April). Effect of 
Signal  Conditioning  and  Evoked-Potential  Based 
Representation on Stability and Distinctiveness of EEG 
Brain  Signatures.  In 2024  12th  International 
Symposium  on  Digital  Forensics  and  Security 
(ISDFS) (pp. 1-7). IEEE. 
Qi,  H.,  Xue,  Y.,  Xu,  L.,  Cao,  Y.,  &  Jiao,  X.  (2018).  A 
speedy calibration method using Riemannian geometry 
measurement  and  other-subject  samples  on  a  P300 
speller. IEEE  Transactions  on  Neural  Systems  and 
Rehabilitation Engineering, 26(3), 602-608. 
Plucińska, R.; Jędrzejewski, K.; Malinowska, U.; Rogala, J. 
Leveraging Multiple Distinct  EEG Training Sessions 
for  Improvement  of  Spectral-Based  Biometric 
Verification Results. Sensors 2023, 23, 2057. 
Riera,  A.,  Soria-Frisch,  A.,  Caparrini,  M.,  Grau,  C.,  & 
Ruffini, G. (2007). Unobtrusive biometric system based 
on  electroencephalogram  analysis. EURASIP  Journal 
on Advances in Signal Processing, 2008, 1-8. 
Spyrou, L., Kouchaki, S., & Sanei, S. (2015, September). 
Multiview classification  of  brain data through  tensor 
factorisation.  In 2015  IEEE  25th  international 
workshop on Machine Learning for Signal Processing 
(MLSP) (pp. 1-6). IEEE. 
Tian, C., Ma, Y., Cammon, J., Fang, F., Zhang, Y., & Meng, 
M.  (2023).  Dual-encoder  VAE-GAN  with 
spatiotemporal  features  for  emotional  EEG  data 
augmentation. IEEE Transactions on Neural Systems 
and Rehabilitation Engineering, 31, 2018-2027. 
Waytowich, N. R., Lawhern, V. J., Bohannon, A. W., Ball, 
K. R., & Lance, B. J. (2016). Spectral transfer learning 
using  information  geometry  for  a  user-independent 
brain-computer interface. Frontiers in neuroscience, 10, 
430. 
Weng, W., Gu, Y., Guo, S., Ma, Y., Yang, Z., Liu, Y., & 
Chen,  Y.  (2024).  Self-supervised  Learning  for 
Electroencephalogram:  A  Systematic  Survey. arXiv 
preprint arXiv:2401.05446. 
Wu, D., Lawhern, V. J., Hairston, W. D., & Lance, B. J. 
(2016). Switching EEG headsets made easy: Reducing 
offline  calibration  effort  using  active  weighted 
adaptation  regularization. IEEE  Transactions  on 
Neural  Systems  and  Rehabilitation 
Engineering, 24(11), 1125-1137. 
Wu, D., Xu, Y., & Lu, B. L. (2020). Transfer learning for 
EEG-based  brain–computer  interfaces:  A  review  of 
progress  made  since  2016. IEEE  Transactions  on 
Cognitive and Developmental Systems, 14(1), 4-19. 
Xu, C., Tao, D., & Xu, C. (2013). A survey on multi-view 
learning. arXiv preprint arXiv:1304.5634. 
Yao, J., & Motani, M. (2018). Deep spatio-temporal feature 
learning using AEs. 
Zhao, M., Gao, H., Wang, W., & Qu, J. (2020). Research 
on  human-computer  interaction  intention  recognition 
based  on  EEG  and  eye  movement. IEEE  Access, 8, 
145824-145832. 
Zhou, T., & Wang, S. (2024). Spatio-Temporal Adaptive 
Diffusion  Models  for  EEG  Super-Resolution  in 
Epilepsy Diagnosis. arXiv preprint arXiv:2407.03089. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Effectiveness of Cross-Model Learning Through View-Model Ensemble on Detection of Spatiotemporal EEG Patterns
949