
 
Figure  4:  Example  of  the  segmentation output for  a  test 
image undergoing self-supervised learning. The tumour is 
shown  in  red,  while  the  background  is  in  yellow. 
Hypervascularized tissue is in blue and normal tissue is in 
green. 
dataset.  Namely,  we  researched  a  self-supervised 
algorithm  to  train  an  innovative  segmentation 
architecture. The proposed methodology allows the 
end-to-end  segmentation  of  such  images,  targeting 
real-time  processing  to  be  employed  during  open 
craniotomy in surgery.  
This  innovative  approach  improves  the  gold-
standard HELICoiD pipeline and it offers competitive 
results  in  terms  of  classification.  We  measured 
competitive inference results for the identification of 
unhealthy  tissue,  namely  exceeding  90%  in 
specificity  and  recall.  Nonetheless,  the  framework 
exhibits  poor  performance  when  the  architecture 
classifies normal and background image portions as 
tumour.  
On the other hand, this is an open research topic 
which we aim to improve and clarify in further works. 
We  believe  the  proposed  SSL  methodology  could 
refine medical HS image segmentation, thus brushing 
up state of the art computer-aided diagnostic systems.  
A further improvement will be the evaluation of our 
approach  considering  broader  datasets,  including  a 
higher number  of  images,  potentially coming  from 
different  brain  tumours,  thus  obtaining  a  general 
diagnostic tool. 
The  proposed  methodology  could  enhance 
medical hyperspectral research overcoming labelling 
and dataset size challenges. 
ACKNOWLEDGEMENTS 
This  work  was  supported  in  part  by  the  Spanish 
Government and European Union (FEDER funds) in 
the context of TALENT-HExPERIA project, under 
the  contract  PID2020-116417RB-C42 
AEI/10.13039/501100011033. 
REFERENCES 
Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R. 
L.,  Soerjomataram,  I.,  &  Jemal,  A.  (2024).  Global 
cancer  statistics  2022:  GLOBOCAN  estimates  of 
incidence and mortality worldwide for 36 cancers in 
185 countries. CA: A Cancer Journal for Clinicians, 
74(3), 229–263. doi: 10.3322/caac.21834 
Collins,  T.,  Maktabi,  M.,  Barberio,  M.,  Bencteux,  V., 
Jansen-Winkeln,  B.,  Chalopin,  C.,  Marescaux,  J., 
Hostettler,  A.,  Diana,  M.,  &  Gockel,  I.  (2021). 
Automatic Recognition of Colon and Esophagogastric 
Cancer  with  Machine  Learning  and  Hyperspectral 
Imaging.  Diagnostics,  11(10),  1810.  doi: 
10.3390/diagnostics11101810 
Fabelo,  H.,  Ortega,  S.,  Kabwama,  S.,  Callico,  G.  M., 
Bulters, D., Szolna, A., Pineiro, J. F., & Sarmiento, R. 
(2016). HELICoiD project: a new use of hyperspectral 
imaging for brain cancer detection in real-time during 
neurosurgical  operations  (D.  P.  Bannon,  Ed.;  p. 
986002). doi: 10.1117/12.2223075 
Fabelo,  H.,  Ortega,  S.,  Lazcano,  R.,  Madroñal,  D.,  M. 
Callicó,  G.,  Juárez,  E.,  Salvador,  R.,  Bulters,  D., 
Bulstrode,  H.,  Szolna,  A.,  Piñeiro,  J.,  Sosa,  C.,  J. 
O’Shanahan, A., Bisshopp, S., Hernández, M., Morera, 
J.,  Ravi,  D.,  Kiran,  B.,  Vega,  A.,  …  Sarmiento,  R. 
(2018). An Intraoperative Visualization System Using 
Hyperspectral  Imaging  to  Aid  in  Brain  Tumor 
Delineation.  Sensors,  18(2),  430.  doi: 
10.3390/s18020430 
Fabelo, H., Ortega, S., Szolna, A., Bulters, D., Pineiro, J. 
F.,  Kabwama,  S.,  J-O’Shanahan,  A.,  Bulstrode,  H., 
Bisshopp,  S.,  Kiran,  B.  R.,  Ravi,  D.,  Lazcano,  R., 
Madronal, D., Sosa, C., Espino, C., Marquez, M., De 
La  Luz  Plaza,  M.,  Camacho,  R.,  Carrera,  D.,  … 
Sarmiento, R. (2019). In-Vivo Hyperspectral Human 
Brain  Image  Database  for  Brain  Cancer  Detection. 
IEEE  Access,  7,  39098–39116.  doi: 
10.1109/ACCESS.2019.2904788 
Florimbi, G., Fabelo, H., Torti, E., Ortega, S., Marrero-
Martin, M., Callico, G. M., Danese, G., & Leporati, F. 
(2020).  Towards  Real-Time  Computing  of 
Intraoperative Hyperspectral Imaging for Brain Cancer 
Detection Using Multi-GPU Platforms. IEEE Access, 
8, 8485–8501. doi: 10.1109/ACCESS.2020.2963939 
Girardi, F., Matz, M., Stiller, C., You, H., Marcos Gragera, 
R., Valkov, M. Y., Bulliard, J.-L., De, P., Morrison, D., 
Wanner,  M.,  O’Brian,  D.  K.,  Saint-Jacques,  N., 
Coleman, M. P., Allemani, C., Bouzbid, S., Hamdi-
Chérif, M., Kara, L., Meguenni, K., Regagba, D., … 
Lewis,  C.  (2023).  Global  survival  trends  for  brain 
tumors, by histology: analysis of individual records for 
556,237 adults diagnosed in 59 countries during 2000–
2014  (CONCORD-3).  Neuro-Oncology,  25(3),  580–
592. doi: 10.1093/neuonc/noac217 
VISAPP 2025 - 20th International Conference on Computer Vision Theory and Applications
638