The T-RAPPI model is integrated into the
'Metropolitano +' mobile application, ensuring
usability for both operators and end-users. This
integration enables operators to make more informed
decisions and improve service efficiency, while users
can better plan their trips.
Future work suggests incorporating real-time
variables, such as weather and traffic conditions, to
enhance the model's accuracy. Additionally,
expanding its application to other public
transportation systems in Lima and other cities could
provide a more comprehensive and robust solution for
urban transportation management.
ACKNOWLEDGEMENTS
The authors are grateful to the Dirección de
Investigación de la Universidad Peruana de Ciencias
Aplicadas for the support provided for this research
work through the economic incentive.
REFERENCES
Alkhereibi, A. H., Wakjira, T. G., Küçükvar, M., & Onat,
N. C. (2023). Predictive machine learning algorithms
for metro ridership based on urban land use policies in
support of Transit-Oriented Development.
Sustainability, 15(2), 1718. https://doi.org/10.3390/su1
5021718
Badii, C., Difino, A., Nesi, P., Paoli, I., & Paolucci, M.
(2021). Classification of users’ transportation
modalities from mobiles in real operating conditions.
Multimedia Tools And Applications, 81(1), 115-140.
https://doi.org/10.1007/s11042-021-10993-y
Calatayud, A., González, S. S., Maya, F. B., Zúñiga, F. G.,
& Márquez, J. M. M. (2021, marzo). Congestión urbana
en América Latina y el Caribe: Características, costos y
mitigación. https://doi.org/10.18235/0003149
Cerqueira, S., Arsénio, E., Barateiro, J., & Henriques, R.
(2024). Moving from classical towards machine
learning stances for bus passengers’ alighting
estimation: a comparison of state-of-the-art approaches
in the city of Lisbon. Transportation Engineering,
100239. https://doi.org/10.1016/j.treng.2024.100239
Gonzales, F. (2024, 14 febrero). ¿Cuánto se pierde en Lima
Metropolitana por el tráfico? Instituto Peruano de
Economía. https://www.ipe.org.pe/portal/cuanto-se-
pierde-en-lima-metropolitana-por-el-trafico /
Hu, S., Weng, J., Liang, Q., Zhou, W., & Wang, P. (2022).
Individual Travel Knowledge Graph-Based Public
Transport Commuter identification: A Mixed Data
Learning approach. Journal of Advanced
Transportation, 2022, 1–16. https://doi.org/10.1155/20
22/2012579
Imhof, S., & Blättler, K. (2023). Assessing spatial
characteristics to predict DRT demand in rural
Switzerland. Research In Transportation Economics,
99, 101301. https://doi.org/10.1016/j.retrec.2023.1013
01
Infraestructura Vial. (2024) Desafíos y Recomendaciones
para Mejorar el Metropolitano en Lima. https://infraes
tructuravial.pe/infraestructura-vial/desafios-y-recomen
daciones-para-mejorar-el-metropolitano-en-lima/
Müller–Hannemann, M., Rückert, R., Schiewe, A., &
Schöbel, A. (2022). Estimating the robustness of public
transport schedules using machine learning.
Transportation Research. Part C, Emerging
Technologies, 137, 103566. https://doi.org/10.1016/
j.trc.2022.103566
Porras, H. J. (2023). Evaluación de la problemática del
servicio de las líneas alimentadoras del Metropolitano
en el sistema de transporte urbano de Lima y Callao y
propuesta de mejora basada en sistemas inteligentes de
transporte [Tesis de Maestría, Universidad ESAN.
Escuela de Administración de Negocios para
Graduados]. Repositorio Institucional Universidad
ESAN. https://hdl.handle.net/20.500.12640/3636
Qadir, A., Outay, F., Gazder, U., & Khalid, M. B. (2023).
Optimizing operational parameters through
minimization of running costs for shared mobility
public transit service: an application of decision tree
models. Personal and Ubiquitous Computing, 27(5),
1655–1668. https://doi.org/10.1007/s00779-023-
01739-8
Rivas, J., Lujan, M. & Palma, R. (2022). El estrés y su
relación con el rendimiento laboral en conductores de
transporte público de la empresa Allin Group-Javier
Prado S.A, Lima-2022. Ciencia Latina Revista
Científica Multidisciplinar, 6(2). https://doi.org/10.37
811/cl_rcm.v6i2.2016
Ruiz, E. A., Yushimito, W. F., Aburto, L., & De la Cruz, R.
(2024). Predicting passenger satisfaction in public
transportation using machine learning models.
Transportation Research. Part A, Policy And Practice,
181, 103995. https://doi.org/10.1016/j.tra.2024.103995
Santos, G., & Николаев, Н. В. (2021). Mobility as a
Service and Public Transport: A Rapid Literature
Review and the Case of Moovit. Sustainability, 13(7),
3666. https://doi.org/10.3390/su13073666
Yin, Z., & Zhang, B. (2023). Bus Travel Time Prediction
Based on the Similarity in Drivers’ Driving Styles.
Future Internet, 15(7), 222. https://doi.org/10.33
90/fi15070222
Zimmo, I., Hörcher, D., Singh, R., & Graham, D. J. (2023).
Benchmarking Travel Time and Demand Prediction
Methods Using Large-scale Metro Smart Card Data.
Periodica Polytechnica. Transportation Engineering,
51(4), 357-374. https://doi.org/10.3311/pptr.22252