(arXiv:2107.13462). arXiv. http://arxiv.org/abs/2107.1
3462
Berlotti, M., Di Grande, S., and Cavalieri, S. (2024).
Proposal of a Machine Learning Approach for Traffic
Flow Prediction. Sensors, 24(7), Article 7.
Berlotti, M., Di Grande, S., Cavalieri, S., and Gueli, R.
(2023). Detection and Prediction of Leakages in Water
Distribution Networks: Proceedings of the 12th
International Conference on Data Science, Technology
and Applications, 436–443.
Cheifetz, N., Noumir, Z., Samé, A., Sandraz, A.-C., Féliers,
C., and Heim, V. (2017). Modeling and clustering water
demand patterns from real-world smart meter data.
Drinking Water Engineering and Science, 10(2), 75–
82.
Claesen, M., and De Moor, B. (2015). Hyperparameter
Search in Machine Learning (arXiv:1502.02127).
arXiv.
Cleveland, W. S. (1979). Robust Locally Weighted
Regression and Smoothing Scatterplots. Journal of the
American Statistical Association, 74(368), 829–836.
Cominola, A., Nguyen, K., Giuliani, M., Stewart, R. A.,
Maier, H. R., and Castelletti, A. (2019). Data Mining to
Uncover Heterogeneous Water Use Behaviors From
Smart Meter Data. Water Resources Research, 55(11),
9315–9333.
Di Grande, S., Berlotti, M., Cavalieri, S., and Gueli, R.
(2024). A Proactive Approach for the Sustainable
Management of Water Distribution Systems. 115–125.
1
Du Plessis, J. L., Faasen, B., Jacobs, H. E., Knox, A. J., and
Loubser, C. (2018). Investigating wastewater flow from
a gated community to disaggregate indoor and outdoor
water use. Journal of Water, Sanitation and Hygiene for
Development, 8(2), 238–245.
Gabbay, D., Thagard, P., Woods, J., Bandyopadhyay, P.,
and Forster, M. (2011). Philosophy of Statistics (Vol.
7).
Huang, X., Ye, Y., Xiong, L., Lau, R. Y., Jiang, N., &
Wang, S. (2016). Time series k-means: A new k-means
type smooth subspace clustering for time series data.
Information Sciences, 367, 1-13.
Jain, A. K., and Moreau, J. V. (1987). Bootstrap technique
in cluster analysis. Pattern Recognition, 20(5), 547–
568.
Kumar, A., Boehm, M., and Yang, J. (2017). Data
Management in Machine Learning: Challenges,
Techniques, and Systems. Proceedings of the 2017
ACM International Conference on Management of
Data, 1717–1722.
Mazzoni, F., Alvisi, S., Blokker, M., Buchberger, S. G.,
Castelletti, A., Cominola, A., Gross, M.-P., Jacobs, H.
E., Mayer, P., Steffelbauer, D. B., Stewart, R. A.,
Stillwell, A. S., Tzatchkov, V., Yamanaka, V.-H. A.,
and Franchini, M. (2023). Investigating the
characteristics of residential end uses of water: A
worldwide review. Water Research, 230, 119500.
McDonald, R. I., Green, P., Balk, D., Fekete, B. M.,
Revenga, C., Todd, M., and Montgomery, M. (2011).
Urban growth, climate change, and freshwater
availability. Proceedings of the National Academy of
Sciences, 108(15), 6312–6317.
Obringer, R., and White, D. (2023). Leveraging
Unsupervised Learning to Develop a Typology of
Residential Water Users’ Attitudes Towards
Conservation. Water Resources Management, 37(1),
37–53.
Optuna: A hyperparameter optimization framework—
Optuna 4.0.0 documentation. (n.d.). Retrieved 23
September 2024, from https://optuna.readthedocs.io/
en/stable/index.html
Pearson, D. (2019). Standard Definitions for Water Losses.
IWA Publishing.
Pearson, K. (1901). On lines and planes of closest fit to
systems of points in space. The London, Edinburgh, and
Dublin Philosophical Mangazine and Journal of
Science, 2(11), 559-571, https://doi.org/10.1080/147
86440109462720
Sahoo, A., and Ghose, D. K. (2022). Imputation of missing
precipitation data using KNN, SOM, RF, and FNN. Soft
Computing, 26(12), 5919–5936.
Shahapure, K. R., and Nicholas, C. (2020). Cluster Quality
Analysis Using Silhouette Score. 2020 IEEE 7th
International Conference on Data Science and
Advanced Analytics (DSAA), 747–748.
tslearn.clustering.TimeSeriesKMeans—Tslearn 0.6.3
documentation. (n.d.). Retrieved 25 September 2024,
from https://tslearn.readthedocs.io/en/stable/gen_mod
ules/clustering/tslearn.clustering.TimeSeriesKMeans.h
tml