REFERENCES
Nižetić, S., Šolić, P., (2020). Internet of Things (IoT):
Opportunities, issues and challenges towards a smart
and sustainable future. Journal of Cleaner Production,
274,
Steidl, M., Felderer, M., & Ramler, R. (2023). The pipeline
for the continuous development of artificial intelligence
models—Current state of research and practice. Journal
of Systems and Software, 199, 111615.
Rosendo, D., Costan, A., Valduriez, P., & Antoniu, G.
(2022). Distributed intelligence on the Edge-to-Cloud
Continuum: A systematic literature review. Journal of
Parallel and Distributed Computing, 166, 71–94.
Bulej, L., et al. (2021). Managing latency in edge–cloud
environment. Journal of Systems and Software, 172,
110872.
Ferahtia, S., Houari, A., Cioara, T., Bouznit, M., Rezk, H.,
(2024). Recent advances on energy management and
control of direct current microgrid for smart cities and
industry: A survey. Applied Energy, 368.
Arcas, G. I., Cioara, T., & Anghel, I. (2024a). Whale
Optimization for Cloud–Edge-Offloading Decision-
Making for Smart Grid Services. Biomimetics, 9, 302.
Arcas, G. I., Cioara, T., Anghel, I., Lazea, D., & Hangan,
A. (2024b). Edge Offloading in Smart Grid. Smart
Cities.
Sakthidevi, I., Sangeetha, A., et al. (2023). Machine
Learning Orchestration in Cloud Environments:
Automating the Training and Deployment of
Distributed Machine Learning AI Model. I-SMAC,
10.1109/i-smac58438.2023.10290278
Pellauer, M., Clemons, J., Balaji, V., Crago, N., Jaleel, A.,
Lee, D., … Emer, J. (2023). Symphony: Orchestrating
Sparse and Dense Tensors with Hierarchical
Heterogeneous Processing. ACM Transactions on
Computer Systems.
Bae, J., Su, G., Iyengar, A., Wu, Y., & Liu, L. (2020).
Efficient Orchestration of Host and Remote Shared
Memory for Memory Intensive Workloads.
McMahan, B. H., Moore, E., Ramage, D., Hampson, S., &
Aguera y Arcas, B. (2017). Communication-Efficient
Learning of Deep Networks from Decentralized Data.
Lin, S. F., Chen, Y. J., Cheng, H. Y., & Yang, C. L. (2023).
Tensor Movement Orchestration in Multi-GPU
Training Systems.
Belcastro, L., et al. (2024). Edge-Cloud Solutions for Big
Data Analysis and Distributed Machine Learning.
Future Generation Computer Systems.
Zhang, J., Zhang, W., Wei, X., & Liu, H. (2024). EPri-
MDAS: An efficient privacy-preserving multiple data
aggregation scheme without trusted authority for fog-
based smart grid. High-Confidence Computing.
Shi, H., Zhao, J., Gu, C., Wang, M., & Huang, H. (2023).
Enabling Efficient Multidimensional Encrypted Data
Aggregation for Fog-Cloud-Based Smart Grid.
Siddiqa, A., Khan, W. Z., Alkinani, M. H., Aldhahri, E., &
Khan, M. K. (2024). Edge-assisted federated learning
framework for smart crowd management. Internet of
Things.
Gamal, M., Awad, S., Abdel-Kader, R. F., & Elsalam, K.
A. (2024). Efficient offloading and task scheduling in
internet of things-cloud-fog environment. International
Journal of Electrical and Computer Engineering.
Kuswiradyo, P., Kar, B., & Shen, S. H. (2024). Optimizing
the energy consumption in three-tier cloud–edge–fog
federated systems with omnidirectional offloading.
Computer Networks.
Duan, Q., & Lu, Z. (2024). Edge Cloud Computing and
Federated–Split Learning in Internet of Things. Future
Internet.
Kamath, G., Agnihotri, P., Valero, M., Sarker, K., & Song,
W. Z. (2016). Pushing Analytics to the Edge.
Zissis, D. (2017). Intelligent security on the edge of the
cloud.
Guo, Z., Mu, Y., Yuexing, P., & Gao, X. (2017). Cloud
Computing Platform Design and Machine Learning-
Based Fault Location Method in Automatic
Dispatching System of Smart Grid.
Park, S. H., Simeone, O., & Shitz, S. S. (2016). Joint
Optimization of Cloud and Edge Processing for Fog
Radio Access Networks. IEEE Transactions on
Wireless Communications.
Wang, S., Tuor, T., Salonidis, T., Leung, K. K., Makaya,
C., He, T., & Chan, K. S. (2018). When Edge Meets
Learning: Adaptive Control for Resource-Constrained
Distributed Machine Learning.
Mao, H., Schwarzkopf, M., Venkatakrishnan, S. B., Meng,
Z., & Alizadeh, M. (2019). Learning scheduling
algorithms for data processing clusters.
Mosquitto. (n.d.). Eclipse Mosquitto: An open-source
MQTT broker. Retrieved from https://mosquitto.org/
Argo Events. (n.d.). Argo Events: Event-based dependency
manager for Kubernetes. Retrieved from https://argo
proj.github.io/argo-events/
Argo Workflows. (n.d.). Argo Workflows: Open-source
container-native workflow engine for Kubernetes.
Retrieved from https://argoproj.github.io/workflows/
Kind. (n.d.). Kubernetes IN Docker: Easily run local
Kubernetes clusters. Retrieved from https://kind.sigs.
k8s.io/
KubeStellar. (n.d.). KubeStellar: Manage workloads across
multiple Kubernetes clusters. Retrieved from
https://github.com/kubestellar/kubestellar
Kumar, Y. (2020). Lambda Architecture – Realtime Data
Processing. Social Science Research Network.
Greater London Authority. (n.d.). Smart meter energy use
data in London households. Retrieved from
https://data.london.gov.uk/dataset/smartmeter-energy-
use-data-in-london-households
Chaves García, A., Martín, C., Kim, K. S., Shahid, A., &
Díaz, M. (2024). Federated learning meets blockchain:
A Kafka-ML integration for reliable model training
using data streams. In Proceedings of the 2024 IEEE
International Conference on Big Data (pp. 7677–
7686). IEEE. https://doi.org/10.1109/BigData62323.20
24.10826034
CLOSER 2025 - 15th International Conference on Cloud Computing and Services Science