Healthcare  Industry:  Classification,  Restrictions, 
Opportunities  and  Challenges.  In  Sensors (Vol. 23, 
Issue 9). MDPI. https://doi.org/10.3390/s23094178 
Chavosh Nejad, M., Hadavandi, E., Nakhostin, M. M., & 
Mehmanpazir,  F.  (2022).  A  data-driven  model  for 
energy  consumption  analysis  along  with  sustainable 
production: A case study in the steel industry. Energy 
Sources, Part A: Recovery, Utilization and 
Environmental Effects,  44(2),  3360–3380. 
https://doi.org/10.1080/15567036.2022.2064943 
Chavosh  Nejad,  M.,  Vestergaard  Matthiesen,  R., 
Dukovska-Popovska,  I.,  Jakobsen,  T.,  &  Johansen,  J. 
(2024).  Machine  learning  for  predicting  duration  of 
surgery and length of stay: A literature review on joint 
arthroplasty.  International Journal of Medical 
Informatics,  192,  105631.  https://doi.org/10.1016/j. 
ijmedinf.2024.105631 
Crowson,  C.  S.,  Gunderson,  T.  M.,  Davis,  J.  M., 
Myasoedova,  E.,  Kronzer,  V.  L.,  Coffey,  C.  M.,  & 
Atkinson,  E.  J.  (2023).  Using  Unsupervised  Machine 
Learning  Methods  to  Cluster  Comorbidities  in  a 
Population-Based Cohort of Patients With Rheumatoid 
Arthritis. Arthritis Care and Research, 75(2), 210–219. 
https://doi.org/10.1002/acr.24973 
Eshghali,  M.,  Mohammad,  A.,  &  Sikaroudi,  E.  (2023). 
Machine learning based integrated scheduling. 
Grant,  R.  W.,  McCloskey,  J., Hatfield, M., Uratsu, C., 
Ralston, J. D., Bayliss, E., & Kennedy, C. J. (2020). Use 
of  Latent  Class  Analysis  and  k-Means  Clustering  to 
Identify  Complex  Patient  Profiles.  JAMA  
Network Open,  3(12).  https://doi.org/10.1001/ 
jamanetworkopen.2020.29068 
Huang, L., Shea, A. L., Qian, H., Masurkar, A., Deng, H., 
&  Liu,  D.  (2019).  Patient  clustering  improves 
efficiency  of  federated  machine  learning  to  predict 
mortality  and  hospital  stay  time  using  distributed 
electronic  medical  records.  Journal of Biomedical 
Informatics,  99.  https://doi.org/10.1016/j.jbi.2019. 
103291 
Kuo,  T.,  &  Wang,  K.  J.  (2022).  A  hybrid  k-prototypes 
clustering  approach  with  improved  sine-cosine 
algorithm for mixed-data classification. Computers and 
Industrial Engineering,  169.  https://doi.org/10. 
1016/j.cie.2022.108164 
Madhuri, R. , et al. (2014). Cluster analysis on different data 
sets  using  K-modes  and  K-prototype  algorithms. ICT 
and Critical Infrastructure: Proceedings of the 48th 
Annual Convention of Computer Society of India-Vol 
II: Hosted by CSI Vishakapatnam Chapter, 137–144. 
Mannion, A. F., Nauer, S., Arsoy, D., Impellizzeri, F. M., 
&  Leunig,  M.  (2020).  The  Association  Between 
Comorbidity and the Risks and Early Benefits of Total 
Hip  Arthroplasty  for  Hip  Osteoarthritis.  Journal of 
Arthroplasty,  35(9),  2480–2487.  https://doi.org/10. 
1016/j.arth.2020.04.090 
Melo Riveros, N. A., Cardenas Espitia, B. A., & Aparicio 
Pico, L. E. (2019). Comparison between K-means and 
Self-Organizing  Maps  algorithms  used  for  diagnosis 
spinal  column  patients.  Informatics in Medicine 
Unlocked,  16.  https://doi.org/10.1016/j.imu. 
2019.100206 
Nanda,  A.,  Mohapatra,  Dr.  B.  B.,  Mahapatra,  A.  P.  K., 
Mahapatra,  A.  P.  K.,  &  Mahapatra,  A.  P.  K.  (2021). 
Multiple  comparison  test  by  Tukey’s  honestly 
significant  difference  (HSD):  Do  the  confident  level 
control type I error. International Journal of Statistics 
and Applied Mathematics,  6(1),  59–65. 
https://doi.org/10.22271/maths.2021.v6.i1a.636 
Nouraei,  H.,  Nouraei,  H.,  &  Rabkin,  S.  W.  (2022). 
Comparison  of  Unsupervised  Machine  Learning 
Approaches for Cluster Analysis to Define Subgroups 
of Heart Failure with Preserved Ejection Fraction with 
Different  Outcomes.  Bioengineering,  9(4). 
https://doi.org/10.3390/bioengineering9040175 
Pasin,  O.,  &  Gonenc,  S.  (2023).  An  investigation  into 
epidemiological situations of COVID-19 with fuzzy K-
means  and  K-prototype clustering  methods.  Scientific 
Reports,  13(1).  https://doi.org/10.1038/s41598-023-
33214-y 
Rahimi,  I.,  &  Gandomi,  A.  H.  (2021).  A  Comprehensive 
Review and Analysis of Operating Room and Surgery 
Scheduling.  Archives of Computational Methods in 
Engineering,  28(3),  1667–1688.  https://doi.org/10. 
1007/s11831-020-09432-2 
Ranti, D., Warburton, A. J., Hanss, K., Katz, D., Poeran, J., 
& Moucha, C. (2020). K-Means Clustering to Elucidate 
Vulnerable  Subpopulations  Among  Medicare Patients 
Undergoing  Total  Joint  Arthroplasty.  Journal of 
Arthroplasty,  35(12),  3488–3497.  https://doi.org/10. 
1016/j.arth.2020.06.063 
Thomas Schneider,  A.  J., Theresia  van  Essen,  J.,  Carlier, 
M., & Hans, E. W. (2020). Scheduling surgery groups 
considering multiple downstream resources. European 
Journal of Operational Research,  282(2),  741–752. 
https://doi.org/10.1016/j.ejor.2019.09.029 
Thongprayoon, C., Mao, M. A., Keddis, M. T., Kattah, A. 
G.,  Chong,  G.  Y.,  Pattharanitima,  P.,  Nissaisorakarn, 
V., Garg, A. K., Erickson, S. B., Dillon, J. J., Garovic, 
V. D., & Cheungpasitporn, W. (2022). Hypernatremia 
subgroups  among  hospitalized  patients  by  machine 
learning  consensus  clustering  with  different  patient 
survival.  Journal of Nephrology,  35(3),  921–929. 
https://doi.org/10.1007/s40620-021-01163-2 
Wang, Y., Zhao, Y., Therneau, T. M., Atkinson, E. J., Tafti, 
A. P., Zhang, N., Amin, S., Limper, A. H., Khosla, S., 
& Liu, H. (2020). Unsupervised machine learning for 
the  discovery  of  latent  disease  clusters  and  patient 
subgroups  using  electronic  health  records.  Journal of 
Biomedical Informatics,  102.  https://doi.org/10. 
1016/j.jbi.2019.103364 
Yeung, E., Jackson, M., Sexton, S., Walter, W., & Zicat, B. 
(2011). The effect of obesity on the outcome of hip and 
knee arthroplasty. In International Orthopaedics (Vol. 
35,  Issue  6,  pp.  929–934).  https://doi.org/10. 
1007/s00264-010-1051-3 
Yuniartha, D. R., Masruroh, N. A., & Herliansyah, M. K. 
(2021). An evaluation of a simple model for predicting 
surgery  duration  using  a  set  of  surgical  procedure