
existing ones; (ii) Exploring methods to overcome the
statelessness of an LLM; (iii) Developing strategies
for creating relationships between classes within the
generated ontology; (iv) Generating smaller and less
complex ontologies than the current work and im-
proving the ontology validation process.
ACKNOWLEDGEMENTS
This research is partially supported by CNPq/MCTI
Nº 10/2023 - UNIVERSAL grant n. 402086/2023-6
and by CNPq grant 306695/2022-7 PQ Sr.
REFERENCES
Amini, R., Norouzi, S. S., Hitzler, P., and Amini, R. (2024).
Towards complex ontology alignment using large lan-
guage models. arXiv preprint arXiv:2404.10329.
Babaei Giglou, H., D’Souza, J., and Auer, S. (2023).
Llms4ol: Large language models for ontology learn-
ing. In International Semantic Web Conference, pages
408–427. Springer.
Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The
semantic web. Scientific American, 284(5):34–43.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2018). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. arXiv preprint
arXiv:1810.04805.
Dhuliawala, S., Komeili, M., Xu, J., Raileanu, R., Li, X.,
Celikyilmaz, A., and Weston, J. (2023). Chain-of-
verification reduces hallucination in large language
models. arXiv preprint arXiv:2309.11495.
Funk, M., Hosemann, S., Jung, J. C., and Lutz, C. (2023).
Towards ontology construction with language models.
arXiv preprint arXiv:2309.09898.
Gao, Y., Xiong, Y., Gao, X., Jia, K., Pan, J., Bi, Y., Dai, Y.,
Sun, J., and Wang, H. (2023). Retrieval-augmented
generation for large language models: A survey. arXiv
preprint arXiv:2312.10997.
Helskyaho, H. (2023). Towards automating database de-
signing. In 2023 34th Conference of Open Innovations
Association (FRUCT), pages 41–48. IEEE.
Kotis, K. I., Vouros, G. A., and Spiliotopoulos, D. (2020).
Ontology engineering methodologies for the evolution
of living and reused ontologies: status, trends, find-
ings and recommendations. The Knowledge Engineer-
ing Review, 35:e4.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Maran, V., Lunardi, G. M., Machado, G. M., Nasci-
mento, L., Lichtnow, D., Cezar, N. L., Gasparini, I.,
de Oliveira, E. H. T., and de Oliveira, J. P. M. (2023).
Smart campuses e ontologias: Um mapeamento sis-
tem
´
atico da literatura e caminhos para a pesquisa.
Anais do XXXIV Simp
´
osio Brasileiro de Inform
´
atica
na Educac¸
˜
ao, pages 1180–1190.
Meyer, L.-P., Stadler, C., Frey, J., Radtke, N., Junghanns,
K., Meissner, R., Dziwis, G., Bulert, K., and Martin,
M. (2023). Llm-assisted knowledge graph engineer-
ing: Experiments with chatgpt. In Working conference
on Artificial Intelligence Development for a Resilient
and Sustainable Tomorrow, pages 103–115. Springer.
Mountantonakis, M. and Tzitzikas, Y. (2023). Real-
time validation of chatgpt facts using rdf knowledge
graphs. ISWC Demo Paper.
Muhamad, W., Kurniawan, N. B., Yazid, S., et al. (2017).
Smart campus features, technologies, and applica-
tions: A systematic literature review. In 2017 Interna-
tional conference on information technology systems
and innovation (ICITSI), pages 384–391. IEEE.
Neto, W. C. B. (2024). Web sem
ˆ
antica e educac¸
˜
ao dist
ˆ
ancia:
Euforia, frustrac¸
˜
ao e recomec¸o. Revista Brasileira de
Inform
´
atica na Educac¸
˜
ao, 32:75–97.
Noy, N. F. and McGuinness, D. L. (2001). Ontology devel-
opment 101: A guide to creating your first ontology.
Technical report.
Pan, S., Luo, L., Wang, Y., Chen, C., Wang, J., and Wu, X.
(2024). Unifying large language models and knowl-
edge graphs: A roadmap. IEEE Transactions on
Knowledge and Data Engineering.
Petroni, F., Rockt
¨
aschel, T., Lewis, P., Bakhtin, A., Wu,
Y., Miller, A. H., and Riedel, S. (2019). Lan-
guage models as knowledge bases? arXiv preprint
arXiv:1909.01066.
Rodrigues, F. H., Lopes, A. G., dos Santos, N. O., Garcia,
L. F., Carbonera, J. L., and Abel, M. (2023). On the
use of chatgpt for classifying domain terms according
to upper ontologies. In International Conference on
Conceptual Modeling, pages 249–258. Springer.
White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert,
H., Elnashar, A., Spencer-Smith, J., and Schmidt,
D. C. (2023). A prompt pattern catalog to enhance
prompt engineering with chatgpt. arXiv preprint
arXiv:2302.11382.
ICEIS 2025 - 27th International Conference on Enterprise Information Systems
104