
robustness and expanding its capabilities for broader
applications.
REFERENCES
Sharafutdinov, D., Griguletskii, M., Kopanev, P., et al.
(2023). Comparison of modern open-source Visual
SLAM approaches. Journal of Intelligent & Robotic
Systems, 107(43). https://doi.org/10.1007/s10846-023-
01812-7
Merzlyakov, A., & Macenski, S. (n.d.). A comparison of
modern general-purpose Visual SLAM approaches.
Samsung Research.
Parikh, S. P., Grassi Jr., V., Kumar, V., & Okamoto Jr., J.
(2005). Usability study of a control framework for an
intelligent wheelchair. In Proceedings of the IEEE
International Conference on Robotics and Automation
(pp. 4745–4750). https://doi.org/1570853
Lim, A. R. G., Rabacca, J. C. D., Valdez, E., Sybingco, E.,
Sapang, O., Roque, M. A., & Gustilo, R. (n.d.). Wi-Fi
indoor navigation system controlled automated
wheelchair. Department of Electronics and
Communications Engineering, De La Salle University-
Manila.
Masud, U., Almolhis, N., Alhazmi, A., Ramakrishnan, J.,
Islam, F. U., & Farooqi, A. R. (2024). Smart wheelchair
controlled through a vision-based autonomous system.
IEEE Access, 12, 65099–65116.
https://doi.org/10.1109/ACCESS.2024.33956
Shahnaz, C., Maksud, A., Fattah, S. A., & Chowdhury,
S. S. (2017). Low-cost smart electric wheelchair with
destination mapping and intelligent control features. In
Proceedings of the IEEE International Symposium on
Technology and Society (ISTAS), Sydney, NSW,
Australia (pp. 1–6).
https://doi.org/10.1109/ISTAS.2017.8318978
Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An
open-source SLAM system for monocular, stereo, and
RGB-D cameras. IEEE Transactions on Robotics,
33(5), 1255–1262.
https://doi.org/10.1109/TRO.2017.2705103
Mur-Artal, R., Montiel, J. M. M., & Tardós, J. D. (2015).
ORB-SLAM: A versatile and accurate monocular
SLAM system. IEEE Transactions on
Robotics,31(5),1147–1163.
https://doi.org/10.1109/TRO.2015.2463671
Wolf, E. J. (2003). Evaluation of electric powered
wheelchairs and exposure to whole-body vibration
(Doctoral dissertation, University of Pittsburgh).
University of Pittsburgh ETD collection.
Cheein, F. A., De La Cruz, C., Carelli, R., & Bastos-Filho,
T. F. (2009). Solution to a door crossing problem for an
autonomous wheelchair. In Proceedings of the
IEEE/RSJ International Conference on Intelligent
Robots and Systems (pp. 4931–4936).
https://doi.org/10.1109/IROS.2009.5354292
Mandel, C., Luth, T., Laue, T., Rofer, T., Graser, A., &
Krieg-Bruckner, B. (2009). Navigating a smart
wheelchair with a brain-computer interface interpreting
steady-state visual evoked potentials. In Proceedings of
the IEEE International Conference on Robotics and
Automation (pp. 1118–1125).
https://doi.org/10.1109/ICRA.2009.5152429
Iturrate, I., Antelis, J., & Minguez, J. (2009). Synchronous
EEG brain-actuated wheelchair with automated
navigation. In Proceedings of the IEEE International
Conference on Robotics and Automation(pp.2318–
2325). https://doi.org/10.1109/ICRA.2009.5152679
Morales, Y., Kallakuri, N., Shinozawa, K., Miyashita, T., &
Hagita, N. (2013). Human-comfortable navigation for
an autonomous robotic wheelchair. In Proceedings of
the IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2013) (pp. 2737–2743).
https://doi.org/10.1109/IROS.2013.6696691
Tanaka, H., Sumi, Y., & Matsumoto, Y. (2012). A visual
marker for precise pose estimation based on lenticular
lenses. In Proceedings of the IEEE International
Conference on Robotics and Automation(pp.5222–
5227). https://doi.org/10.1109/ICRA.2012.6224736
Tanaka, H., Sumi, Y., & Matsumoto, Y. (2012). A high-
accuracy visual marker based on a microlens array. In
Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (pp. 4192–4197).
https://doi.org/10.1109/IROS.2012.6385917
Mur-Artal, R., & Tardós, J. D. (2017). ORB-SLAM2: An
open-source SLAM system for monocular, stereo, and
RGB-D cameras. IEEE Transactions on Robotics,
33(5), 1255–1262.
https://doi.org/10.1109/TRO.2017.2705103
Comparative Study of ORB-SLAM2 and IR-Based Revolution Counting with Ultrasonic Obstacle Avoidance for Autonomous Wheelchair
Navigation
39