INFOCOM 2024 - IEEE Conference on Computer
Communications (pp. 1151–1160). IEEE.
Dinsdale, N. K., Jenkinson, M., & Namburete, A. I. L.
2022. FedHarmony: Unlearning Scanner Bias with
Distributed Data. In L. Wang, Q. Dou, P. T. Fletcher, S.
Speidel, & S. Li (Eds.), Medical Image Computing and
Computer Assisted Intervention (MICCAI 2022), Part
VIII (Vol. 13438, pp. 695–704). Springer.
Gong, J., Simeone, O., & Kang, J. 2023. Compressed
Particle-Based Federated Bayesian Learning and
Unlearning. IEEE Communications Letters, 27(2),
556–560.
Gu, H., Ong, W., Chan, C. S., & Fan, L. 2024. Ferrari:
Federated Feature Unlearning via Optimizing Feature
Sensitivity. arXiv Preprint.
Guo, X., Wang, P., Qiu, S., Song, W., Zhang, Q., Wei, X.,
& Zhou, D. 2024. FAST: Adopting Federated
Unlearning to Eliminating Malicious Terminals at
Server Side. IEEE Transactions on Network Science
and Engineering, 11(2), 2289–2302.
Halimi, A., Kadhe, S., Rawat, A., & Baracaldo, N. 2023.
Federated Unlearning: How to Efficiently Erase a
Client in FL?. arXiv Preprint.
https://arxiv.org/abs/2207.05521
Huynh, T. T., Nguyen, T. B., Nguyen, P. L., Nguyen, T. T.,
Weidlich, M., Nguyen, Q. V. H., & Aberer, K. 2024.
Fast-FedUL: A Training-Free Federated Unlearning
with Provable Skew Resilience. In Proceedings of
Machine Learning and Knowledge Discovery in
Databases. Research Track (pp. 55–72). Springer
Nature Switzerland.
Liu, G., Ma, X., Yang, Y., Wang, C., & Liu, J. 2021.
FedEraser: Enabling Efficient Client-Level Data
Removal from Federated Learning Models. In
Proceedings of the 2021 IEEE/ACM 29th International
Symposium on Quality of Service (IWQoS) (pp. 1–10).
IEEE.
Liu, Y., Xu, L., Yuan, X., Wang, C., & Li, B. 2022. The
Right to be Forgotten in Federated Learning: An
Efficient Realization with Rapid Retraining. In IEEE
INFOCOM 2022 - IEEE Conference on Computer
Communications (pp. 1749–1758). IEEE.
Liu, Z., Jiang, Y., Shen, J., Peng, M., Lam, K.-Y., Yuan, X.,
& Liu, X. 2024. A Survey on Federated Unlearning:
Challenges, Methods, and Future Directions. ACM
Computing Surveys, Article 3679014.
Liu, Z., Ye, H., Jiang, Y., Shen, J., Guo, J., Tjuawinata, I.,
& Lam, K.-Y. 2024. Privacy-Preserving Federated
Unlearning with Certified Client Removal. arXiv
Preprint.
Nguyen, T.-H., Vu, H.-P., Nguyen, D. T., Nguyen, T. M.,
Doan, K. D., & Wong, K.-S. 2024. Empirical Study of
Federated Unlearning: Efficiency and Effectiveness. In
Proceedings of the 15th Asian Conference on Machine
Learning (pp. 959–974).
Qiu, H., Wang, Y., Xu, Y., Cui, L., & Shen, Z. 2023.
FedCIO: Efficient Exact Federated Unlearning with
Clustering, Isolation, and One-shot Aggregation. In
Proceedings of the 2023 IEEE International Conference
on Big Data (pp. 5559–5568). IEEE.
Su, W., Kang, B., Zhao, X., & Zhang, Y. 2024. F2UL:
Fairness-Aware Federated Unlearning for Data
Trading. IEEE Transactions on Mobile Computing, 1–
16.
Tang, Y., Zhao, S., Chen, H., Li, C., Zhai, J., & Zhou, Q.
2024. Fuzzy Rough Unlearning Model for Feature
Selection. International Journal of Approximate
Reasoning, 165, 109102.
Wang, J., Song, G., Xin, X., & Heng, Q. 2022. Federated
Unlearning via Class-Discriminative Pruning. In
Proceedings of the ACM Web Conference 2022 (pp.
622–632). ACM.
Wu, L., Guo, S., Wang, J., Hong, Z., Zhang, J., & Ding, Y.
2022. Federated Unlearning: Guarantee the Right of
Clients to Forget. IEEE Network, 36(5), 129–135.
Xu, H., Zhu, T., Zhang, L., Zhou, W., & Yu, P. S. 2024.
Update Selective Parameters: Federated Machine
Unlearning Based on Model Explanation. IEEE
Transactions on Big Data, 1–16.
Zhang, L., Zhu, T., Zhang, H., Xiong, P., & Zhou, W. 2023.
FedRecovery: Differentially Private Machine
Unlearning for Federated Learning Frameworks. IEEE
Transactions on Information Forensics and Security,
18, 4732–4746.
Zhao, Y., Wang, P., Qi, H., Huang, J., Wei, Z., & Zhang,
Q. 2024. Federated Unlearning with Momentum
Degradation. IEEE Internet of Things Journal, 11(5),
8860–8870.
Zuo, X., Wang, M., Zhu, T., Zhang, L., Yu, S., & Zhou, W.
2024. Federated Learning with Blockchain-Enhanced
Machine Unlearning: A Trustworthy Approach. arXiv
Preprint.