REFERENCES
Bansal, T., Belanger, D., & McCallum, A. (2016,
September). Ask the gru: Multi-task learning for deep
text recommendations. In Proceedings of the 10th ACM
Conference on Recommender Systems (pp. 107-114).
Chen, C. C., Lai, P. L., & Chen, C. Y. (2023). ColdGAN:
An effective cold-start recommendation system for new
users based on generative adversarial networks. Applied
Intelligence, 53(7), 8302-8317.
Chen, M., Ma, T., & Zhou, X. (2022). CoCNN: Co-
occurrence CNN for recommendation. Expert Systems
with Applications, 195, 116595.
Chen, M., Weinberger, K., Sha, F., & Bengio, Y. (2014,
June). Marginalized denoising auto-encoders for
nonlinear representations. In International Conference
on Machine Learning (pp. 1476-1484). PMLR.
Chen, W., Cai, F., Chen, H., & Rijke, M. D. (2019). Joint
neural collaborative filtering for recommender systems.
ACM Transactions on Information Systems (TOIS),
37(4), 1-30.
Donkers, T., Loepp, B., & Ziegler, J. (2017, August).
Sequential user-based recurrent neural network
recommendations. In Proceedings of the Eleventh ACM
Conference on Recommender Systems (pp. 152-160).
Fayyaz, Z., Ebrahimian, M., Nawara, D., Ibrahim, A., &
Kashef, R. (2020). Recommendation systems:
Algorithms, challenges, metrics, and business
opportunities. Applied Sciences, 10(21), 7748.
Gao, M., Zhang, J., Yu, J., Li, J., Wen, J., & Xiong, Q.
(2021). Recommender systems based on generative
adversarial networks: A problem-driven perspective.
Information Sciences, 546, 1166-1185.
Gui, J., Sun, Z., Wen, Y., Tao, D., & Ye, J. (2021). A review
on generative adversarial networks: Algorithms, theory,
and applications. IEEE Transactions on Knowledge and
Data Engineering, 35(4), 3313-3332.
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., & Chua, T. S.
(2017, April). Neural collaborative filtering. In
Proceedings of the 26th International Conference on
World Wide Web (pp. 173-182).
Ko, H., Lee, S., Park, Y., & Choi, A. (2022). A survey of
recommendation systems: Recommendation models,
techniques, and application fields. Electronics, 11(1),
141.
Khan, Z. A., Zubair, S., Imran, K., Ahmad, R., Butt, S. A.,
& Chaudhary, N. I. (2019). A new users rating-trend
based collaborative denoising auto-encoder for top-N
recommender systems. IEEE Access, 7, 141287-
141310.
Kingma, D. P. (2013). Auto-encoding variational bayes.
arXiv preprint arXiv:1312.6114.
Li, L., Xiahou, J., Lin, F., & Su, S. (2023). DistVAE:
Distributed variational autoencoder for sequential
recommendation. Knowledge-Based Systems, 264,
110313.
Li, M., Zhang, Z., Zhao, X., Wang, W., Zhao, M., Wu, R.,
& Guo, R. (2023, April). AutoMLP: Automated MLP
for sequential recommendations. In Proceedings of the
ACM Web Conference 2023 (pp. 1190-1198).
Li, Z., Chen, H., Ni, Z., Deng, X., Liu, B., & Liu, W. (2022).
ARPCNN: Auxiliary review-based personalized
attentional CNN for trustworthy recommendation.
IEEE Transactions on Industrial Informatics, 19(1),
1018-1029.
Samek, W., Montavon, G., Lapuschkin, S., Anders, C. J., &
Müller, K. R. (2021). Explaining deep neural networks
and beyond: A review of methods and applications.
Proceedings of the IEEE, 109(3), 247-278.
Shenbin, I., Alekseev, A., Tutubalina, E., Malykh, V., &
Nikolenko, S. I. (2020, January). RecVAE: A new
variational autoencoder for top-n recommendations
with implicit feedback. In Proceedings of the 13th
International Conference on Web Search and Data
Mining (pp. 528-536).
Shiri, F. M., Perumal, T., Mustapha, N., & Mohamed, R.
(2023). A comprehensive overview and comparative
analysis on deep learning models: CNN, RNN, LSTM,
GRU. arXiv preprint arXiv:2305.17473.
Smagulova, K., & James, A. P. (2019). A survey on LSTM
memristive neural network architectures and
applications. The European Physical Journal Special
Topics, 228(10), 2313-2324.
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A.
(2008, July). Extracting and composing robust features
with denoising autoencoders. In Proceedings of the
25th International Conference on Machine Learning
(pp. 1096-1103).
Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y.,
Manzagol, P. A., & Bottou, L. (2010). Stacked
denoising autoencoders: Learning useful
representations in a deep network with a local denoising
criterion. Journal of Machine Learning Research,
11(12), 1103-1127.
Wang, H., Shi, X., & Yeung, D. Y. (2015, February).
Relational stacked denoising autoencoder for tag
recommendation. In Proceedings of the AAAI
Conference on Artificial Intelligence (Vol. 29, No. 1).
Wang, S., Sun, L., Fan, W., Sun, J., Naoi, S., Shirahata,
K., ... & Hashimoto, T. (2017, July). An automated
CNN recommendation system for image classification
tasks. In 2017 IEEE International Conference on
Multimedia and Expo (ICME) (pp. 283-288). IEEE.
Wu, Q., Liu, Y., Miao, C., Zhao, B., Zhao, Y., & Guan, L.
(2019, August). PD-GAN: Adversarial learning for
personalized diversity-promoting recommendation. In
IJCAI (Vol. 19, pp. 3870-3876).
Wu, Y., DuBois, C., Zheng, A. X., & Ester, M. (2016,
February). Collaborative denoising auto-encoders for
top-n recommender systems. In Proceedings of the
Ninth ACM International Conference on Web Search
and Data Mining (pp. 153-162).
Yang, S., Yu, X., & Zhou, Y. (2020, June). LSTM and GRU
neural network performance comparison study: Taking
Yelp review dataset as an example. In 2020
International Workshop on Electronic Communication
and Artificial Intelligence (IWECAI) (pp. 98-101).
IEEE.
Zeng, F., Tang, R., & Wang, Y. (2022). User personalized
recommendation algorithm based on GRU network