detection system. Looking to the future, integrating
these advanced technologies is crucial to ensure that
users have a safer and more efficient email
environment.
REFERENCES
Aragão, M. V. C., Ferreira, I. C., Oliveira, E. M., Kuehne,
B. T., Moreira, E. M., & Carpinteiro, O. A. S., 2021. A
study and evaluation of classifiers for anti-spam
systems. IEEE Access, 9, pp. 157482-157496.
AbdulNabi, I., & Yaseen, Q., 2021. Spam email detection
using deep learning techniques. Procedia Computer
Science, 184, 853-858.
Ablel-Rheem, D. M., Ibrahim, A. O., Kasim, S., Almazroi,
A. A., & Ismail, M. A., 2020. Hybrid feature selection
and ensemble learning method for spam email
classification. International Journal of Advanced
Trends in Computer Science and Engineering, 9(1.4),
217-223.
Adnan, M., Imam, M. O., Javed, M. F., & Murtza, I., 2024.
Improving spam email classification accuracy using
ensemble techniques: A stacking approach.
International Journal of Information Security, 23, 505–
517.
Beaman, C., & Isah, H., 2021. Anomaly detection in emails
using machine learning and header information.
Canadian Institute for Cybersecurity, University of
New Brunswick.
Beckel, Z., 2024. How email spam filters work:
Understanding your email filter system. Qudni.
Blanchard, T., 2024. An in-depth guide to how email spam
filter works. Sterling Technology Solutions.
Chu, K.-T., Hsu, H.-T., Sheu, J.-J., Yang, W.-P., & Lee, C.-
C., 2020. Effective spam filter based on a hybrid
method of header checking and content parsing. IET
Networks, 9(6), 338-347.
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K., 2019.
BERT: Pre-training of deep bidirectional transformers
for language understanding. arXiv.
Elliott, A., 2023. SpamAssassin scores explained: What
email marketers need to know. MailerCheck.
Feng, W., Sun, J., Zhang, L., Cao, C., & Yang, Q., 2016. A
support vector machine based naive Bayes algorithm
for spam filtering. 2016 IEEE 35th International
Performance Computing and Communications
Conference (IPCCC), 1-8.
Ghosh, A., & Senthilrajan, A., 2023. Comparison of
machine learning techniques for spam detection.
Multimedia Tools and Applications.
Gibson, S., Issac, B., Zhang, L., & Jacob, S. M., 2020.
Detecting spam email with machine learning optimized
with bio-inspired metaheuristic algorithms. IEEE
Access, 8, 187914-187932.
Junnarkar, A., Adhikari, S., Fagania, J., Chimurkar, P., &
Karia, D., 2021. E-Mail spam classification via
machine learning and natural language processing.
2021 Third International Conference on Intelligent
Communication Technologies and Virtual Mobile
Networks (ICICV), 693-699.
Kaddoura, S., Alfandi, O., & Dahmani, N., 2020. A spam
email detection mechanism for English language text
emails using deep learning approach. 2020 IEEE 29th
International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE),
193-198.
Kumar, N., Sonowal, S., & Nishant., 2020. Email spam
detection using machine learning algorithms. 2020
Second International Conference on Inventive Research
in Computing Applications (ICIRCA), 108-113.
Kaddoura, S., Alfandi, O., & Dahmani, N., 2020. A spam
email detection mechanism for English language text
emails using deep learning approach. 2020 IEEE 29th
International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE),
193-198.
Mohammad, R. M. A., 2020. A lifelong spam emails
classification model. Applied Computing and
Informatics, 20(1/2), 35-54.
Roumeliotis, K. I., Tselikas, N. D., & Nasiopoulos, D. K.,
2024. Next-generation spam filtering: Comparative
fine-tuning of LLMs, NLPs, and CNN models for email
spam classification. Electronics, 13(2034).
Roy, P. K., Singh, J. P., & Banerjee, S., 2020. Deep learning
to filter SMS spam. Future Generation Computer
Systems, 102, 524-533.
Regina, K., Gopu, A., & Govindasamy, V., 2020. Spam
detection using recurrent neural networks. International
Journal for Research in Engineering Application &
Management, 6(1), 313-318.
Saidani, N., Adi, K., & Allili, M. S., 2020. A semantic-
based classification approach for an enhanced spam
detection. Computers & Security, 94, 101716.
Si, S., Wu, Y., Tang, L., Zhang, Y., & Wosik, J., 2024.
Evaluating the performance of ChatGPT for spam email
detection. arXiv.
Tida, V. S., & Hsu, S., 2020. Universal spam detection
using transfer learning of BERT model. Center of
Advanced Computer Studies, University of Louisiana
at Lafayette.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., & Polosukhin, I., 2017.
Attention is all you need. In 31st Conference on Neural
Information Processing Systems (NIPS 2017), Long
Beach, CA, USA.
Van Impe, K., 2016. Understanding the SPF and DKIM
spam filtering mechanisms. Security Intelligence.
Zych, S., 2020. Patterns are power: A beginner’s guide to
spam detection. Medium.