REFERENCES
Bai, F., Wu, J., Shen, P., Li, S., & Zhou, S. 2021. Federated
face recognition. arXiv preprint arXiv:2105.02501.
Cheng, X., Ma, C., Li, J., Song, H., Shu, F., & Wang, J.
2022. Federated learning-based localization with
heterogeneous fingerprint database. IEEE Wireless
Communications Letters, 11(7), 1364-1368.
Gupta, H., Rajput, T. K., Vyas, R., Vyas, O. P., & Puliafito,
A. 2022. Biometric iris identifier recognition with
privacy preserving phenomenon: A federated learning
approach. In International Conference on Neural
Information Processing (pp. 493-504). Singapore:
Springer Nature Singapore.
Jain, A. K., & Kumar, A. 2012. Biometric recognition: an
overview. Second generation biometrics: The ethical,
legal and social context, 49-79.
Lian, F. Z., Huang, J. D., Liu, J. X., Chen, G., Zhao, J. H.,
& Kang, W. X. 2023. FedFV: A personalized federated
learning framework for finger vein authentication.
Machine Intelligence Research, 20(5), 683-696.
Luo, Z., Wang, Y., Wang, Z., Sun, Z., & Tan, T. 2022.
Fediris: Towards more accurate and privacy-preserving
iris recognition via federated template communication.
In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (pp. 3357-
3366).
Mammen, P. M. 2021. Federated learning: Opportunities
and challenges. arXiv preprint arXiv:2101.05428.
Meng, Q., Zhou, F., Ren, H., Feng, T., Liu, G., & Lin, Y.
2022. Improving federated learning face recognition via
privacy-agnostic clusters. arXiv preprint
arXiv:2201.12467.
Minaee, S., Abdolrashidi, A., Su, H., Bennamoun, M., &
Zhang, D. 2023. Biometrics recognition using deep
learning: A survey. Artificial Intelligence Review,
56(8), 8647-8695.
Mu, H., Guo, J., Liu, X., Han, C., & Sun, L. 2024. Federated
finger vein presentation attack detection for various
clients. IET Computer Vision.
Niu, Y., & Deng, W. 2022. Federated learning for face
recognition with gradient correction. In Proceedings of
the AAAI Conference on Artificial Intelligence (Vol.
36, No. 2, pp. 1999-2007).
Qi, P., Chiaro, D., & Piccialli, F. 2023. FL-FD: Federated
learning-based fall detection with multimodal data
fusion. Information fusion, 99, 101890.
Qiu, Y., Chen, H., Dong, X., Lin, Z., Liao, I. Y., Tistarelli,
M., & Jin, Z. 2024. Ifvit: Interpretable fixed-length
representation for fingerprint matching via vision
transformer. arXiv preprint arXiv:2404.08237.
Saeed, F., Hussain, M., & Aboalsamh, H. A. 2022.
Automatic fingerprint classification using deep learning
technology (DeepFKTNet). Mathematics, 10(8), 1285.
Srinivas, N., Aggarwal, G., Flynn, P. J., & Bruegge, R. W.
V. 2011. Facial marks as biometric signatures to
distinguish between identical twins. In CVPR 2011
WORKSHOPS (pp. 106-113). IEEE.
Teoh, K. H., Ismail, R. C., Naziri, S. Z. M., Hussin, R., Isa,
M. N. M., & Basir, M. S. S. M. 2021. Face recognition
and identification using deep learning approach. In
Journal of Physics: Conference Series (Vol. 1755, No.
1, p. 012006). IOP Publishing.
Tomashenko, N., Mdhaffar, S., Tommasi, M., Estève, Y.,
& Bonastre, J. F. 2022. Privacy attacks for automatic
speech recognition acoustic models in a federated
learning framework. In ICASSP 2022-2022 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (pp. 6972-6976). IEEE.
Yang, Z., Teoh, A. B. J., Zhang, B., Leng, L., & Zhang, Y.
2024. Physics-Driven Spectrum-Consistent Federated
Learning for Palmprint Verification. International
Journal of Computer Vision, 1-16.
Yin, B., Tran, L., Li, H., Shen, X., & Liu, X. 2019. Towards
interpretable face recognition. In Proceedings of the
IEEE/CVF International Conference on Computer
Vision (pp. 9348-9357).