Future research will focus on enhancing model
generalization and incorporating multimodal data
fusion. To improve generalization, the study aims to
collect multicenter data, standardize preprocessing
workflows, and apply domain adaptation techniques
to ensure robustness across clinical environments. For
multimodal data fusion, future efforts will integrate
biomarkers like MRI, PET scans, and cerebrospinal
fluid analysis, while developing architectures to
process heterogeneous data and explore optimal
fusion strategies. These efforts are expected to further
improve AD diagnosis and provide new insights into
diagnosing other neurodegenerative diseases, leading
to more accurate and comprehensive diagnostic
systems.
REFERENCES
Adduru, V., Baum, S. A., Zhang, C., Helguera, M., Zand,
R., Lichtenstein, M., Griessenauer, C. J. and Michael,
A. M., 2020. A method to estimate brain volume from
head CT images and application to detect brain atrophy
in Alzheimer disease. American Journal of
Neuroradiology, 41(2), pp.224-230.
Clark, C. M., Xie, S., Chittams, J., Ewbank, D., Peskind, E.,
Galasko, D., Morris, J. C., McKeel, D. W., Farlow, M.,
Weitlauf, S. L., Quinn, J., Kaye, J., Knopman, D., Arai,
H., Doody, R. S., DeCarli, C., Leight, S., Lee, V. M.-Y.
and Trojanowski, J. Q., 2003. Cerebrospinal fluid tau
and β-amyloid: How well do these biomarkers reflect
autopsy-confirmed dementia diagnoses? Archives of
Neurology, 60(12), pp.1696–1702.
El-Assy, A. M., Amer, H. M., Ibrahim, H. M. and
Mohamed, M. A., 2024. A novel CNN architecture for
accurate early detection and classification of
Alzheimer’s disease using MRI data. Scientific
Reports, 14(1), 3463.
Folego, G., Weiler, M., Casseb, R. F., Pires, R. and Rocha,
A., 2020. Alzheimer's disease detection through whole-
brain 3D-CNN MRI. Frontiers in Bioengineering and
Biotechnology, 8, 534592.
Hasanah, S. A., Pravitasari, A. A., Abdullah, A. S., Yulita,
I. N. and Asnawi, M. H., 2023. A deep learning review
of ResNet architecture for lung disease identification in
CXR images. Applied Sciences, 13(24), 13111.
Hinton, G., Vinyals, O. and Dean, J., 2015. Distilling the
knowledge in a neural network. arXiv.
Neshat, M., Ahmed, M., Askari, H., Thilakaratne, M. and
Mirjalili, S., 2023. Hybrid Inception Architecture with
residual connection: Fine-tuned Inception-ResNet deep
learning model for lung inflammation diagnosis from
chest radiographs. arXiv.
Smithsonian Magazine, 2023. Here’s where the highest
rates of Alzheimers are in the United States.
Song, J., Zheng, J., Li, P., Lu, X., Zhu, G. and Shen, P.,
2021. An effective multimodal image fusion method
using MRI and PET for Alzheimer's disease diagnosis.
Frontiers in Digital Health, 3, 637386.
Subramoniam, M., Aparna, T. R., Anurenjan, P. R. and
Sreeni, K. G., 2022. Deep learning-based prediction of
Alzheimer’s disease from magnetic resonance images.
In M. Saraswat, H. Sharma and K. V. Arya (Eds.),
Intelligent vision in healthcare, pp.183-198. Springer.
Trudeau, V. L., 2018. Facing the challenges of
neuropeptide gene knockouts: Why do they not inhibit
reproduction in adult teleost fish? Frontiers in
Neuroscience, 12, Article 302.
Zhou, Z., Lu, C., Wang, W., Dang, W. and Gong, K., 2022.
Semi-supervised medical image classification based on
attention and intrinsic features of samples. Applied
Sciences, 12(13), 6726.