the efficacy of data augmentation procedures may
also depend on the particular features of the dataset.
6 CONCLUSIONS
Through data augmentation techniques and loss
function tuning, this study greatly enhanced the nnU-
Net model's performance in medical picture
segmentation tasks. By increasing the weight of Dice
loss, the model showed enhanced performance in
handling small targets and data imbalance, while the
improvements in data augmentation made the model
more resilient to perturbations like noise and rotation.
These enhancements boosted accuracy, boundary
handling, and robustness, outperforming
TotalSegmentator in metrics like Dice Score, IoU,
and Hausdorff Distance.
Future research will aim to reduce the model's
training time by exploring more efficient
optimization algorithms and ensemble learning
techniques. Additionally, efforts will focus on
validating the model's adaptability and ensuring the
generalizability of its data augmentation strategies
across various types of medical image datasets,
ultimately seeking to enhance performance and
reliability across a broader range of applications.
REFERENCES
Akinci, D., Antonoli, T., Yang, S., & Braren, R. F. (2023).
TotalSegmentator MRI: Sequence-independent
segmentation of 59 anatomical structures in MR
images. arXiv preprint. arXiv:2301.10693.
https://doi.org/10.48550/arXiv.2301.10693
Chen, J., Lu, Y., Yu, Q., Luo, X., Adeli, E., Wang, Y., ... &
Anandkumar, A. (2021). TransUNet: Transformers
make strong encoders for medical image segmentation.
arXiv preprint. arXiv:2102.04306.
https://doi.org/10.48550/arXiv.2102.04306
Çiçek, Ö., Abdulkadir, A., Lienkamp, S. S., Brox, T., &
Ronneberger, O. (2016). 3D U-Net: Learning dense
volumetric segmentation from sparse annotation. In
International Conference on Medical Image Computing
and Computer-Assisted Intervention (pp. 424-432).
Springer, Cham. https://doi.org/10.1007/978-3-319-
46723-8_49
DeVries, T., & Taylor, G. W. (2017). Improved
regularization of convolutional neural networks with
cutout. arXiv preprint. arXiv:1708.04552.
https://doi.org/10.48550/arXiv.1708.04552
Fischl, B., Salat, D. H., van der Kouwe, A. J. W., Makris,
N., Ségonne, F., Quinn, B. T., & Dale, A. M. (2004).
Sequence-independent segmentation of magnetic
resonance images. NeuroImage, 23(S1), S69-S84.
https://doi.org/10.1016/j.neuroimage.2004.07.016
Hatamizadeh, A., Yin, Y., Kuo, W.-L., & Myronenko, A.
(2021). Swin UNETR: Swin transformers for semantic
segmentation of brain tumors in MRI images. In
Proceedings of the International Conference on
Medical Image Computing and Computer-Assisted
Intervention (pp. 272-284). Springer, Cham.
https://doi.org/10.1007/978-3-030-87237-3_24
Isensee, F., Jaeger, P. F., Kohl, S. A. A., Petersen, J., &
Maier-Hein, K. H. (2021). nnU-Net: A self-configuring
method for deep learning-based biomedical image
segmentation. Nature Methods, 18(2), 203-211.
https://doi.org/10.1038/s41592-020-01008-z
Kumar, N., Verma, R., & Arora, S. (2021). Three-stage
segmentation of lung region from CT images using
deep neural networks. BMC Medical Imaging, 21(1), 1-
12. https://doi.org/10.1186/s12880-021-00589-8
Milletari, F., Navab, N., & Ahmadi, S.-A. (2016). V-Net:
Fully convolutional neural networks for volumetric
medical image segmentation. In 2016 Fourth
International Conference on 3D Vision (pp. 565-571).
IEEE. https://doi.org/10.1109/3DV.2016.79
Ronneberger, O., Fischer, P., & Brox, T. (2015). U-Net:
Convolutional networks for biomedical image
segmentation. In Proceedings of the International
Conference on Medical Image Computing and
Computer-Assisted Intervention (pp. 234-241).
Springer, Cham. https://doi.org/10.1007/978-3-319-
24574-4_28
Roy, A. G., Conjeti, S., Navab, N., & Wachinger, C. (2018).
Concurrent spatial and channel 'Squeeze & Excitation'
in fully convolutional networks. In Proceedings of the
International Conference on Medical Image Computing
and Computer-Assisted Intervention (pp. 421-429).
Springer, Cham. https://doi.org/10.1007/978-3-030-
00928-1_47
Salehi, S. S. M., Erdogmus, D., & Gholipour, A. (2017).
Tversky loss function for image segmentation using 3D
fully convolutional deep networks. In Proceedings of
the International Conference on Machine Learning in
Medical Imaging (pp. 379-387). Springer, Cham.
https://doi.org/10.1007/978-3-319-67389-9_44
Sudre, C. H., Li, W., Vercauteren, T., Ourselin, S., &
Cardoso, M. J. (2017). Generalised dice overlap as a
deep learning loss function for highly unbalanced
segmentations. In Deep Learning in Medical Image
Analysis (pp. 240-248). Springer, Cham.
https://doi.org/10.1007/978-3-319-67558-9_28
Wasserthal, J., Meyer, M., Breit, H. C., Cyriac, J., Yang, S.,
& Segeroth, M. (2023). Totalsegmentator: Robust
segmentation of 104 anatomic structures in CT images.
Radiology: Artificial Intelligence, 5(2), e220198.
https://doi.org/10.1148/ryai.220198
Zhang, H., Cisse, M., Dauphin, Y. N., & Lopez-Paz, D.
(2018). Mixup: Beyond empirical risk minimization. In
International Conference on Learning Representations
(ICLR). https://doi.org/10.48550/arXiv.1710.09412