Barfejani, A. H., Rahimi, M., Safdari, H., Gholizadeh, S.,
Borzooei, S., Roshanaei, G., ... & Tarokhian, A. 2024.
Thy-DAMP: Deep artificial neural network model for
prediction of thyroid cancer mortality. European
Archives of Oto-Rhino-Laryngology, 1-7.
Choi, S. H., Kim, E., Heo, S. J., Seol, M. Y., Chung, Y., &
Yoon, H. I. 2024. Integrative prediction model for
radiation pneumonitis incorporating genetic and
clinical-pathological factors using machine learning.
Clinical and Translational Radiation Oncology, 48,
100819.
Downs, J., Harrison, R. F., Kennedy, R. L., & Cross, S. S.
1996. Application of the fuzzy artmap neural network
model to medical pattern classification tasks. Artificial
Intelligence in Medicine, 8(4), 403.
Hua, K. L., Hsu, C. H., Hidayati, S. C., Cheng, W. H., &
Chen, Y. J. 2015. Computer-aided classification of lung
nodules on computed tomography images via deep
learning technique. OncoTargets and therapy, 2015-
2022.
Janiesch, C., Zschech, P., & Heinrich, K. 2021. Machine
learning and deep learning. Electronic Markets, 31(3),
685-695.
LeCun, Y., Bengio, Y., & Hinton, G. 2015. Deep learning.
Nature, 521(7553), 436-444.
Li, C., Dong, X., Yuan, Q., Xu, G., Di, Z., & Yang, Y., et
al. 2023. Identification of novel characteristic
biomarkers and immune infiltration profile for the
anaplastic thyroid cancer via machine learning
algorithms. Journal of endocrinological investigation.
Liao, S. H. 2005. Expert system methodologies and
applications—a decade review from 1995 to 2004.
Expert Systems with Applications, 28(1), 93-103.
Mitchell, T. M. 2003. Machine Learning. McGraw-Hill.
Olatunji, S. O., Alotaibi, S., Almutairi, E., Alrabae, Z., &
Alhiyafi, J. 2021. Early diagnosis of thyroid cancer
diseases using computational intelligence techniques: a
case study of a Saudi Arabian dataset. Computers in
Biology and Medicine, 131(4), 104267.
Shang, H., Wu, Q., Wu, J., Zhou, S., Wang, Z., Wang, H.,
& Yin, J. 2024. Study on breast cancerization and
isolated diagnosis in situ by HOF-ATR-MIR
spectroscopy with deep learning. Spectrochimica Acta
Part A: Molecular and Biomolecular Spectroscopy,
124546.
Shah, A. A., Daud, A., Bukhari, A., Alshemaimri, B.,
Ahsan, M., & Younis, R. 2024. DEL-Thyroid: Deep
ensemble learning framework for detection of thyroid
cancer progression through genomic mutation. BMC
Medical Informatics and Decision Making, 24(1), 198.
Shetty, M. V., & Tunga, S. 2022. Optimized deformable
model-based segmentation and deep learning for lung
cancer classification. The Journal of Medical
Investigation, 69(3.4), 244-255.
Shehab, M., Abualigah, L., Shambour, Q., Abu-Hashem,
M. A., Shambour, M. K. Y., Alsalibi, A. I., & Gandomi,
A. H. 2022. Machine learning in medical applications:
A review of state-of-the-art methods. Computers in
Biology and Medicine, 145, 105458.
Shinde, P. P., & Shah, S. 2018. A review of machine
learning and deep learning applications. In 2018 Fourth
international conference on computing communication
control and automation (ICCUBEA), 1-6. IEEE.
Singhal, P., Walambe, R., Ramanna, S., & Kotecha, K.
2023. Domain adaptation: Challenges, methods,
datasets, and applications. IEEE Access, 11, 6973-
7020.
Van den Broeck, G., Lykov, A., Schleich, M., & Suciu, D.
2022. On the tractability of SHAP explanations. Journal
of Artificial Intelligence Research, 74, 851-886.
Vani, G., Savitha, R., & Sundararajan, N. 2011.
Classification of abnormalities in digitized
mammograms using Extreme Learning Machine.
International Conference on Control Automation
Robotics & Vision. IEEE.
Vaka, A. R., Soni, B., & Reddy, S. 2020. Breast cancer
detection by leveraging Machine Learning. ICT
Express, 6(4), 320-324.
Weiss, K., Khoshgoftaar, T. M., & Wang, D. 2016. A
survey of transfer learning. Journal of Big Data, 3, 1-
40.
WHO, IARC. 2024. Retrieved from
https://www.iarc.who.int/
Zhang, Y., & Ling, C. 2018. A strategy to apply machine
learning to small datasets in materials science. NPJ
Computational Materials, 4(1), 25.