prediction LSTM module. Expert Systems With
Applications, 113(DEC.), 457-480.
Basak, S., Kar, S., Saha, S., Khaidem, L., & Dey, S. R.
(2019). Predicting the direction of stock market prices
using tree-based classifiers. North American Journal Of
Economics And Finance, 47, 552-567.
Bondt, W. D., & Thaler, R. (1990). Do security analysts
overreact? The American Economic Review, pp. 80,
52-57.
Breiman, L. (2001). Random forests, machine learning 45.
Journal of Clinical Microbiology, 2, 199-228.
Dang, L. M., Sadeghi-Niaraki, A., Huynh, H. D., Min, K.,
& Moon, H. (2018). Deep learning approach for short-
term stock trends prediction based on two-stream gated
recurrent unit network. IEEE Access, 6, 55392-55404.
Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998).
Investor Psychology and Security Market Under and
Overreactions. The Journal of Finance, 53: 1839-1885.
Das, N., Sadhukhan, B., Chatterjee, R., & Chakrabarti, S.
(2024). Integrating sentiment analysis with graph
neural networks for enhanced stock prediction: a
comprehensive survey. Decision Analytics Journal, 10.
Fama, E. (1970). Efficient market hypothesis: A Review of
Theory and Empirical Work.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term
memory. Neural Computation, 9(8), 1735-1780.
Kumbure, M. M., Lohrmann, C., Luukka, P., & Porras, J.
(2022). Machine learning techniques and data for stock
market forecasting: A literature review. Expert Systems
with Applications, Volume 197, 2022, 116659, ISSN
0957-4174.
Lin, T., Tino, P., & Giles, C. L. (1996). Learning long-term
dependencies in NARX recurrent neural networks.
IEEE Transactions on Neural Networks, 7(6), 1329-
1338.
Lohrmann, C., & Luukka, P. (2019). Classification of
intraday s&p500 returns with a random forest.
International Journal of Forecasting, 35(1), 390-407.
Nelson, D. B. (1991). Conditional heteroskedasticity in
asset returns: a new approach. Modelling. Stock Market
Volatility, 59(2), 347-0.
Patil, P. R., Parasar, D., & Charhate, S. (2023). An effective
deep learning model with reduced error rate for accurate
forecast of stock market direction. Intelligent decision
technologies: An international journal, 17(3), 621-639.
Patro, S. G., & Sahu, K. K. (2015). Normalization: a
preprocessing stage.
Rath, S., Das, N. R., & Pattanayak, B. K. (2024). Stacked
BI-LSTM and E-optimized CNN-A hybrid deep
learning model for stock price prediction. Optical
Memory and Neural Networks.
Sedighi, M., Jahangirnia, H., Gharakhani, M., & Fard, S. F.
(2019). A novel hybrid model for stock price
forecasting based on metaheuristics and support vector
machine. 4(2), 75.
Singh, H., & Malhotra, M. (2023). A novel approach of
stock price direction and price prediction based on
investor's sentiments. SN Computer Science, 4(6), 1-
10.