4 CONCLUSIONS
This research extended the deterministic model of
Influenza-Meningitis coinfection transmission
dynamics to a generalized Caputo fractional
derivative to consider the memory effect of a
biological system. We demonstrated the qualitative
properties of the model to ensure its biological
relevance, specifically focusing on coinfection
transmission. Using the next-generation method, we
obtained two equilibrium points and computed the
basic reproduction number for Influenza-Meningitis
coinfection. Furthermore, we analysed the local
stability condition of the disease-free equilibrium.
Additionally, we performed numerical simulations
with several values of fractional order, influenza
transmission rate, meningitis transmission rate, and
quarantine rate to explore their effects to the
transmission. Different values of the fractional order
indicated varying speeds of reaching a steady state or
endemic level.
ACKNOWLEDGEMENTS
This research was financially supported by Institut
Teknologi Bacharuddin Jusuf Habibie Research and
Community Service Grant scheme 2024
REFERENCES
Abdullahi Baba, I., Ibrahim Olamilekan, L., Yusuf, A.,
Baleanu, D., (2020). Analysis of meningitis model: A
case study of northern Nigeria. AIMS Bioengineering,
7(4), 179–193. https://doi.org/10.3934/bioeng.2020016
Asamoah, J. K. K., Nyabadza, F., Seidu, B., Chand, M., &
Dutta, H. (2018). Mathematical Modelling of Bacterial
Meningitis Transmission Dynamics with Control
Measures. Computational and Mathematical Methods
in Medicine, 2018, 1–21. https://doi.org/10.1155/
2018/2657461
Aulia, N., & Kharis, M. (2016). Pemodelan Matematika
Epidemi Influenza Dengan Memperhatikan Peluang
Keberhasilan Vaksinasi Dan Kekebalan Tetap.
Barros, L. C. de, Lopes, M. M., Pedro, F. S., Esmi, E.,
Santos, J. P. C. dos, & Sánchez, D. E. (2021). The
memory effect on fractional calculus: An application in
the spread of COVID-19. Computational and Applied
Mathematics, 40(3), 72. https://doi.org/10.1007/s
40314-021-01456-z
Bashir, H. E., Laundy, M., & Booy, R. (2003). Diagnosis
and treatment of bacterial meningitis.
Beauchemin, C. A., & Handel, A. (2011). A review of
mathematical models of influenza A infections within a
host or cell culture: Lessons learned and challenges
ahead.
Buonomo, B., & Della Marca, R. (2024). A behavioural
vaccination model with application to meningitis spread
in Nigeria. Applied Mathematical Modelling, 125, 334–
350. https://doi.org/10.1016/j.apm.2023.09.031
Cartwright, K. A. V., Jones, D. M., Kaczmarski, E., Smith,
A. J., Stuart, J. M., & Palmer, S. R. (1991). Influenza A
and meningococcal disease. The Lancet, 338(8766),
554–557.https://doi.org/10.1016/0140-6736(91)91112-8
Choi, S., Kang, B., & Koo, N. (2014). Stability for Caputo
Fractional Differential Systems. Abstract and Applied
Analysis, 2014, 1–6. https://doi.org/10.1155/2014/
631419
Dreessche, P., & Watmough, J. (2002). Reproduction
Numbers and Sub-threshold Endemic Equilibria for
Compartmental Models of Disease Transmission.
Mathematical Biosciences, 180, 29–48. https://doi.org/
10.1016/S0025-5564(02)00108-6
Garrappa, R. (2018). Numerical Solution of Fractional
Differential Equations: A Survey and a Software
Tutorial. Mathematics, 6(2), 16. https://doi.org/
10.3390/math6020016
Goswami, N. K., & Shanmukha, B. (2016). A Mathematical
Model of Influenza: Stability and Treatment.
Haubold, H. J., Mathai, A. M., & Saxena, R. K. (2011).
Mittag‐Leffler Functions and Their Applications.
Journal of Applied Mathematics, 2011
(1), 298628.
https://doi.org/10.1155/2011/298628
Jonnalagadda, J. M. (2022). Epidemic Analysis and
Mathematical Modelling of H1N1 (A) with
Vaccination. Nonautonomous Dynamical Systems,
9(1), 1–10. https://doi.org/10.1515/msds-2020-0143
Kanyiri, C. W., Mark, K., & Luboobi, L. (2018).
Mathematical Analysis of Influenza A Dynamics in the
Emergence of Drug Resistance. Computational and
Mathematical Methods in Medicine, 2018, 1–14.
https://doi.org/10.1155/2018/2434560
Kharis, M., & Arifudin, R. (2017). Mathematical Model of
Seasonal Influenza with Treatment in Constant
Population. Journal of Physics: Conf. Series, 824, 01
2034. https://doi.org/10.1088/1742-6596/824/1/012034
Kotola, B. S., & Mekonnen, T. T. (2022). Mathematical
model analysis and numerical simulation for codynamics
of meningitis and pneumonia infection with intervention.
Scientific Reports, 12(1), 2639. https://doi.org/10.1
038/s41598-022-06253-0
Musa, S. S., Zhao, S., Hussaini, N., Habib, A. G., & He, D.
(2020). Mathematical modeling and analysis of
meningococcal meningitis transmission dynamics.
International Journal of Biomathematics, 13(01),
2050006. https://doi.org/10.1142/S1793524520500060
Peter, O. J., Yusuf, A., Ojo, M. M., Kumar, S., Kumari, N.,
& Oguntolu, F. A. (2022). A Mathematical Model
Analysis of Meningitis with Treatment and Vaccination
in Fractional Derivatives. International Journal of
Applied and Computational Mathematics, 8(3), 117.
https://doi.org/10.1007/s40819-022-01317-1
Salomon, A., Berry, I., Tuite, A. R., Drews, S., Hatchette,
T., Jamieson, F., Johnson, C., Kwong, J., Lina, B., Lojo,