Furthermore, this study analyzes the limitations of
ML algorithms in real-world scenarios, particularly
related to interpretability, generalizability, and data
privacy. To improve the practical application of
machine learning in customer segmentation, future
research might focus on improving interpretability
through Expert Systems and SHAP, enhancing
generalizability through Transfer Learning and
Domain Adaptation, and addressing privacy concerns
through Federated Learning.
REFERENCES
Alkhayrat, M., Aljnidi, M., & Aljoumaa, K. 2020. A
comparative dimensionality reduction study in telecom
customer segmentation using deep learning and
PCA. Journal of Big Data, 7(1), 9.
Arefin, S., Parvez, R., Ahmed, T., Ahsan, M., Sumaiya, F.,
Jahin, F., & Hasan, M. 2024. Retail Industry Analytics:
Unraveling Consumer Behavior through RFM
Segmentation and Machine Learning. In 24th Annual
IEEE International Conference on Electro Information
Technology (eit2024).
Das, S., & Nayak, J. 2022. Customer segmentation via data
mining techniques: state-of-the-art review.
Computational Intelligence in Data Mining:
Proceedings of ICCIDM 2021, 489-507.
Duarte, V., Zuniga-Jara, S., & Contreras, S. 2022. Machine
learning and marketing: A systematic literature
review. IEEE Access, 10, 93273-93288.
Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R.
2021. A brief review of domain adaptation. Advances
in data science and Information engineering:
proceedings from ICDATA 2020 and IKE 2020, 877-894.
Frye, M., et al. 2021. Benchmarking of data preprocessing
methods for machine learning-applications in
production. Procedia CIRP, 104, 50-55.
Goyle, K., Xie, Q., & Goyle, V. 2024. Dataassist: A
machine learning approach to data cleaning and
preparation. In Intelligent Systems Conference (pp.
476-486). Cham: Springer Nature Switzerland.
Jing, Z. 2024. Research on E-commerce Customer
Segmentation Based on the K-means++ algorithm.
In International Conference on Advanced Information
Networking and Applications (pp. 439-446). Cham:
Springer Nature Switzerland.
Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T.
2018. Customer segmentation using K-means
clustering. In 2018 international conference on
computational techniques, electronics and mechanical
systems (CTEMS) (pp. 135-139). IEEE.
Lalwani, P., Mishra, M. K., Chadha, J. S., & Sethi, P. 2022.
Customer churn prediction system: a machine learning
approach. Computing, 104(2), 271-294.
Li, Y., Chu, X., Tian, D., Feng, J., & Mu, W. 2021.
Customer segmentation using K-means clustering and
the adaptive particle swarm optimization
algorithm. Applied Soft Computing, 113, 107924.
Luo, Y., Zhang, R., Wang, F., & Wei, T. 2023. Customer
Segment Classification Prediction in the Australian
Retail Based on Machine Learning Algorithms.
In Proceedings of the 2023 4th International
Conference on Machine Learning and Computer
Application (pp. 498-503).
Mahmoud, H. H., & Asyhari, A. T. 2024. Customer
Segmentation for Telecommunication Using Machine
Learning. In International Conference on Knowledge
Science, Engineering and Management (pp. 144-154).
Singapore: Springer Nature Singapore.
Pejić Bach, M., Pivar, J., & Jaković, B. 2021. Churn
management in telecommunications: Hybrid approach
using cluster analysis and decision trees. Journal of
Risk and Financial Management, 14(11), 544.
Sharaf Addin, E. H., Admodisastro, N., Mohd Ashri, S. N.
S., Kamaruddin, A., & Chong, Y. C. 2022. Customer
mobile behavioral segmentation and analysis in telecom
using machine learning. Applied Artificial
Intelligence, 36(1), 2009223.
Shen, B. 2021. E-commerce customer segmentation via
unsupervised machine learning. In The 2nd international
conference on computing and data science (pp. 1-7).
Sivaguru, M. 2023. Dynamic customer segmentation: a case
study using the modified dynamic fuzzy c-means
clustering algorithm. Granular Computing, 8(2), 345-
360.
Snehalatha, N., et al. 2023. Customer Segmentation and
Profiling For E-Commerce Using Dbscan And Fuzzy C-
Means. Proceedings on Engineering, 5(3), 539-544.
Tan, C. F., Wahidin, L. S., Khalil, S. N., Tamaldin, N., Hu,
J., & Rauterberg, G. W. M. 2016. The application of
expert system: A review of research and
applications. ARPN Journal of Engineering and
Applied Sciences, 11(4), 2448-2453.
Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic,
M., & Anderla, A. 2019. Credit card fraud detection-
machine learning methods. In 2019 18th International
Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1-
5). IEEE.
Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A.
2020. Stock closing price prediction using machine
learning techniques. Procedia computer science, 167,
599-606.
Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. 2021.
Integrated churn prediction and customer segmentation
framework for telco business. Ieee Access, 9, 62118-
62136.
Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. 2021.
Integrated churn prediction and customer segmentation
framework for telco business. Ieee Access, 9, 62118-
62136.
Zadoo, A., Jagtap, T., Khule, N., Kedari, A., & Khedkar, S.
2022. A review on churn prediction and customer
segmentation using machine learning. In 2022
International Conference on Machine Learning, Big
Data, Cloud and Parallel Computing (COM-IT-
CON) (Vol. 1, pp. 174-178). IEEE.