Furthermore, this study analyzes the limitations of 
ML algorithms in real-world scenarios, particularly 
related to interpretability, generalizability, and data 
privacy. To improve the practical application of 
machine learning in customer segmentation, future 
research might focus on improving interpretability 
through Expert Systems and SHAP, enhancing 
generalizability through Transfer Learning and 
Domain Adaptation, and addressing privacy concerns 
through Federated Learning.  
REFERENCES 
Alkhayrat, M., Aljnidi, M., & Aljoumaa, K. 2020. A 
comparative dimensionality reduction study in telecom 
customer segmentation using deep learning and 
PCA. Journal of Big Data, 7(1), 9. 
Arefin, S., Parvez, R., Ahmed, T., Ahsan, M., Sumaiya, F., 
Jahin, F., & Hasan, M. 2024. Retail Industry Analytics: 
Unraveling Consumer Behavior through RFM 
Segmentation and Machine Learning. In 24th Annual 
IEEE International Conference on Electro Information 
Technology (eit2024). 
Das, S., & Nayak, J. 2022. Customer segmentation via data 
mining techniques: state-of-the-art review. 
Computational Intelligence in Data Mining: 
Proceedings of ICCIDM 2021, 489-507. 
Duarte, V., Zuniga-Jara, S., & Contreras, S. 2022. Machine 
learning and marketing: A systematic literature 
review. IEEE Access, 10, 93273-93288. 
Farahani, A., Voghoei, S., Rasheed, K., & Arabnia, H. R. 
2021. A brief review of domain adaptation. Advances 
in data science and Information engineering: 
proceedings from ICDATA 2020 and IKE 2020, 877-894. 
Frye, M., et al. 2021. Benchmarking of data preprocessing 
methods for machine learning-applications in 
production. Procedia CIRP, 104, 50-55. 
Goyle, K., Xie, Q., & Goyle, V. 2024. Dataassist: A 
machine learning approach to data cleaning and 
preparation. In Intelligent Systems Conference (pp. 
476-486). Cham: Springer Nature Switzerland. 
Jing, Z. 2024. Research on E-commerce Customer 
Segmentation Based on the K-means++ algorithm. 
In International Conference on Advanced Information 
Networking and Applications (pp. 439-446). Cham: 
Springer Nature Switzerland. 
Kansal, T., Bahuguna, S., Singh, V., & Choudhury, T. 
2018. Customer segmentation using K-means 
clustering. In 2018  international conference on 
computational techniques, electronics and mechanical 
systems (CTEMS) (pp. 135-139). IEEE. 
Lalwani, P., Mishra, M. K., Chadha, J. S., & Sethi, P. 2022. 
Customer churn prediction system: a machine learning 
approach. Computing, 104(2), 271-294. 
Li, Y., Chu, X., Tian, D., Feng, J., & Mu, W. 2021. 
Customer segmentation using K-means clustering and 
the adaptive particle swarm optimization 
algorithm. Applied Soft Computing, 113, 107924. 
Luo, Y., Zhang, R., Wang, F., & Wei, T. 2023. Customer 
Segment Classification Prediction in the Australian 
Retail Based on Machine Learning Algorithms. 
In Proceedings of the 2023 4th International 
Conference on Machine Learning and Computer 
Application (pp. 498-503). 
Mahmoud, H. H., & Asyhari, A. T. 2024. Customer 
Segmentation for Telecommunication Using Machine 
Learning. In International Conference on Knowledge 
Science, Engineering and Management (pp. 144-154). 
Singapore: Springer Nature Singapore. 
Pejić Bach, M., Pivar, J., & Jaković, B. 2021. Churn 
management in telecommunications: Hybrid approach 
using cluster analysis and decision trees. Journal of 
Risk and Financial Management, 14(11), 544. 
Sharaf Addin, E. H., Admodisastro, N., Mohd Ashri, S. N. 
S., Kamaruddin, A., & Chong, Y. C. 2022. Customer 
mobile behavioral segmentation and analysis in telecom 
using machine learning. Applied Artificial 
Intelligence, 36(1), 2009223. 
Shen, B. 2021. E-commerce customer segmentation via 
unsupervised machine learning. In The 2nd international 
conference on computing and data science (pp. 1-7). 
Sivaguru, M. 2023. Dynamic customer segmentation: a case 
study using the modified dynamic fuzzy c-means 
clustering algorithm. Granular Computing, 8(2), 345-
360. 
Snehalatha, N., et al. 2023. Customer Segmentation and 
Profiling For E-Commerce Using Dbscan And Fuzzy C-
Means. Proceedings on Engineering, 5(3), 539-544. 
Tan, C. F., Wahidin, L. S., Khalil, S. N., Tamaldin, N., Hu, 
J., & Rauterberg, G. W. M. 2016. The application of 
expert system: A review of research and 
applications. ARPN Journal of Engineering and 
Applied Sciences, 11(4), 2448-2453. 
Varmedja, D., Karanovic, M., Sladojevic, S., Arsenovic, 
M., & Anderla, A. 2019. Credit card fraud detection-
machine learning methods. In 2019 18th International 
Symposium INFOTEH-JAHORINA (INFOTEH) (pp. 1-
5). IEEE. 
Vijh, M., Chandola, D., Tikkiwal, V. A., & Kumar, A. 
2020. Stock closing price prediction using machine 
learning techniques. Procedia computer science, 167, 
599-606. 
Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. 2021. 
Integrated churn prediction and customer segmentation 
framework for telco business. Ieee Access, 9, 62118-
62136. 
Wu, S., Yau, W. C., Ong, T. S., & Chong, S. C. 2021. 
Integrated churn prediction and customer segmentation 
framework for telco business. Ieee Access, 9, 62118-
62136. 
Zadoo, A., Jagtap, T., Khule, N., Kedari, A., & Khedkar, S. 
2022. A review on churn prediction and customer 
segmentation using machine learning. In 2022 
International Conference on Machine Learning, Big 
Data, Cloud and Parallel Computing (COM-IT-
CON) (Vol. 1, pp. 174-178). IEEE.