Müller, F., Xu, J., Kristensen, L., Wolters-Arts, M., de
Groot, P.F., Jansma, S.Y., et al. (2016). High-
temperature-induced defects in tomato (Solanum
lycopersicum) anther and pollen development are
associated with reduced expression of B-class floral
patterning genes. PLoS ONE 11:e0167614.
Nahar, K., & Ullah, S. M. (2011). Effect of water stress on
moisture content distribution in soil and morphological
characters of two tomato (Lycopersicon esculentum
Mill) Cultivars. Journal of Scientific Research, 3(3).
Olivieri, F., Calafiore, R., Francesca, S., Schettini, C.,
Chiaiese, P., Rigano, M. M., & Barone, A. (2020).
High-throughput genotyping of resilient tomato
landraces to detect candidate genes involved in the
response to high temperatures. Genes, 11(6), 626.
Paupière, M. J., Van Heusden, A. W., & Bovy, A. G.
(2014). The metabolic basis of pollen thermo-tolerance:
perspectives for
Piosik, Ł., Ruta-Piosik, M., Zenkteler, M., & Zenkteler, E.
(2019). Development of interspecific hybrids between
Solanum lycopersicum L. and S. sisymbriifolium Lam.
via embryo calli. Euphytica, 215, 1-20.
Poudyal, D., Akash, M., Khatri, L., Shrestha, D. S., &
Uptmoor, R. (2017). Solanum habrochaites
introgression line grafted as rootstock in cultivated
tomato maintains growth and improves yield under cold
and drought stresses. Journal of Crop Improvement,
31(4), 589-607.
Quinet, M., Angosto, T., Yuste-Lisbona, F. J., Blanchard-
Gros, R., Bigot, S., Martinez, J. P., & Lutts, S. (2019).
Tomato fruit development and metabolism. Frontiers in
plant science, 10, 1554.
Raja, M. M., Vijayalakshmi, G., Naik, M. L., Basha, P. O.,
Sergeant, K., Hausman, J. F., & Khan, P. S. S. V.
(2019). Pollen development and function under heat
stress: from effects to responses. Acta Physiologiae
Plantarum, 41,
Ruggieri, V., Francese, G., Sacco, A., D’Alessandro, A.,
Rigano, M. M., Parisi, M., ... & Barone, A. (2014). An
association mapping approach to identify favourable
alleles for tomato fruit quality breeding. BMC plant
biology, 14(1), 1-15.
Sato, S., Kamiyama, M., Iwata, T., Makita, N., Furukawa,
H., & Ikeda, H. (2006). Moderate increase of mean
daily temperature adversely affects fruit set of
Lycopersicon esculentum by disrupting specific
physiological processes in male reproductive
development. Annals of botany, 97(5), 731-738.
Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood,
T., Tufail, M. A., ... & Haris, M. (2021). Nexus on
climate change: Agriculture and possible solution to
cope future climate change stresses. Environmental
Science and Pollution Research, 28, 14211-14232.
Sharma, P., Jha, A. B., Dubey, R. S., & Pessarakli, M.
(2012). Reactive oxygen species, oxidative damage,
and antioxidative defense mechanism in plants under
stressful conditions. Journal of Botany, 2012.
Singh, A., Shamim, M., Singh, A., & Singh, R. P. (2020).
Genes, QTLs and linked molecular markers conferring
the resistance for various biotic stresses in tomato
cultivar.
Solankey, S. S., Akhtar, S., Neha, P., Kumari, M., &
Kherwa, R. (2018). Screening and identification of heat
tolerant tomato genotypes for Bihar. Journal of
Pharmacognosy and Phytochemistry, 7(4S), 97-100.
Song, J., Nada, K., & Tachibana, S. (2002). Suppression of
S-adenosylmethionine decarboxylase activity is a major
cause for high-temperature inhibition of pollen
germination and tube growth in tomato (Lycopersicon
esculentum Mill.). Plant and cell physiology, 43(6),
619-627.
Tanksley, S. D., & Nelson, J. C. (1996). Advanced
backcross QTL analysis: a method for the simultaneous
discovery and transfer of valuable QTLs from
unadapted germplasm into elite breeding lines.
Theoretical and Applied Genetics, 92, 191-203.
Tello, J., Montemayor, M. I., Forneck, A., & Ibáñez, J.
(2018). A new image-based tool for the high throughput
phenotyping of pollen viability: evaluation of inter-and
intra-cultivar diversity in grapevine. Plant methods,
14(1), 1-17.
Tian, Y., Wang, H., Zhang, Z., Zhao, X., Wang, Y., &
Zhang, L. (2021). An RNA-seq analysis reveals
differential transcriptional responses to different light
qualities in leaf color of Camellia sinensis cv.
Huangjinya. Journal of Plant Growth Regulation, 1-16.
Vitale, L., Francesca, S., Arena, C., D’Agostino, N.,
Principio, L., Vitale, E., ... & Rigano, M. M. (2023).
Multitraits evaluation of a Solanum pennellii
introgression tomato line challenged by combined
abiotic stress. Plant Biology.
Wang, W., Vinocur, B., Shoseyov, O., & Altman, A.
(2004). Role of plant heat-shock proteins and molecular
chaperones in the abiotic stress response. Trends in
plant science, 9(5), 244-252.
Wen, J., Jiang, F., Weng, Y., Sun, M., Shi, X., Zhou, Y., ...
& Wu, Z. (2019). Identification of heat-tolerance QTLs
and high-temperature stress-responsive genes through
conventional QTL mapping, QTL-seq and RNA-seq in
tomato. BMC plant biology, 19, 1-17.
Xiao, H.-J., Yin, Y.-X., Chai, W.-G., and Gong, Z.-H.
(2014). Silencing of the CaCP gene delays salt-and
osmotic-induced leaf senescence in Capsicum annuum
L. Int. J. Mol. Sci. 15, 8316–8334.
Xu, J., Wolters-Arts, M., Mariani, C., Huber, H., & Rieu, I.
(2017a). Heat stress affects vegetative and reproductive
performance and trait correlations in tomato (Solanum
lycopersicum). Euphytica, 213, 1-12.
Yeh, C. H., Kaplinsky, N. J., Hu, C., & Charng, Y. Y.
(2012). Some like it hot, some like it warm:
phenotyping to explore thermotolerance diversity.
Plant Science, 195, 10-23.
Zhang, H., Mittal, N., Leamy, L. J., Barazani, O., & Song,
B. H. (2017). Back into the wild—Apply untapped
genetic diversity of wild relatives for crop
improvement. Evolutionary Applications, 10(1), 5-24.
Zhou, R., Kong, L., Wu, Z., Rosenqvist, E., Wang, Y.,
Zhao, L., ... & Ottosen, C. O. (2019). Physiological
response of tomatoes at drought, heat and their