Social networks measurements performed in this
analysis have provided useful datasets that can be
analysed further using a variety of statistical methods.
Moreover, other research techniques that can be
applied include the use of semantically more effective
NLP approaches combined with sentiment analysis of
posting content (Mohammad, 2015) and application
of multivariate statistical processing of Social Media
data. To draw more thorough conclusions or examine
trends in various stages of the conflict, these methods
can be applied to other Social Media platforms as well
as over more extended time frames.
REFERENCES
Agarwal, N. S., Punn, N. S., and Sonbhadra S. K. (2022).
Exploring Public Opinion Dynamics on the Verge of
World War III using Russia-Ukraine war -Tweets
Dataset. [online] Available at: https://www.kdd.org/
kdd2022/papers/27_Navya%20Sonal%20Agarwal.pdf
[Accessed 5 Sep. 2022].
Al Jazeera (2022). “No other option”: Excerpts of Putin’s
speech declaring war. Retrieved from
www.aljazeera.com website: https://www.aljazeera.
com/news/2022/2/24/putins-speech-declaring-war-on-
ukraine-translated-excerpts [Accessed 5 Sep. 2022].
Arun, K., Srinagesh, A. and Ramesh, M. (2017). Twitter
Sentiment Analysis on Demonetization tweets in India
Using R language. International Journal of Computer
Engineering in Research Trends, [online] 4(6), pp.252-
258. Available at: https://ijcert.org/ems/ijcert_papers
/V4I6008.pdf [Accessed 5 Sep. 2022]. ISSN: 2349-
7084
Ayyappan, G. & Chidambaram, Nalini. (2016). A study on
SNA: Measure average degree and average weighted
degree of knowledge diffusion in GEPHI. International
Journal of Pharmacy and Technology. 8. 23788-23795.
ISSN : 0976-5166
Bastian, M., Heymann, S. and Jacomy, M. (2009). Gephi:
An Open Source Software for Exploring and
Manipulating Networks. Proceedings of the
International AAAI Conference on Web and Social
Media, pp.361-362. DOI: 10.1609/icwsm.v3i1.13937
Dixon, S. (2022). Global Social Networks Ranked by
Number of Users 2022. Statista. [online] Available at:
https://www.statista.com/statistics/272014/global-soci
al-networks-ranked-by-number-of-users/. [Accessed
17 Oct. 2022].
Džubur, B., Trojer, Ž. and Zrimšek, U. (2022). Semantic
Analysis of Russo-Ukrainian War Tweet Networks.
[online] Available at: https://www.scores.si/
assets/papers/6258.pdf [Accessed 6 Sep. 2022].
Feinerer, I., Hornik, K. and Meyer, D. (2008) Text Mining
Infrastructure in R, Journal of Statistical Software,
25(5). DOI: 10.18637/jss.v025.i05
GetDayTrends (2022). Twitter Trending Hashtags and
Topics. [online] Available at: https://getday
trends.com/. [Accessed 18 Aug. 2022].
Hanley, H. W. A., Kumar, D., and Durumeric, Z. (2022).
Happenstance: Utilizing Semantic Search to Track
Russian State Media Narratives about the Russo-
Ukrainian War on Reddit. DOI: 10.48550/arXiv.
2205.14484
Haq, E. U., Tyson, G., Lee, L. H., Braud, T., and Hui, P.
(2022). Twitter Dataset for 2022 Russo-Ukrainian
Crisis. DOI: 10.48550/arXiv.2203.02955
Hu, Yifan. (2005). Efficient and High Quality Force-Directed
Graph Drawing. Mathematica Journal. 10. 37-71
Kabir, A., Karim, R., Newaz, S., and Hossain, M. (2018).
The Power of Social Media Analytics: Text Analytics
Based on Sentiment Analysis and Word Clouds on R.
Informatica Economica, 22(1/2018), pp. 25-38. DOI:
10.12948/issn14531305/22.1.2018.03
Koutsoupias, N. and Mikelis, K. (2021). Text, Content and
Data Analysis of Journal Articles: The Field of
International Relations. Data Analysis and Rationality
in a Complex World, pp. 113-120. DOI: 10.1007/978-
3-030-60104-1_13
Kumar, A., and Paul, A. (2016). Mastering text mining with
R. Packt Publishing Ltd. ISBN: 978-1783551811
Mohammad, S. (2015). Emotion Measurement 2015
Sentiment Analysis: Detecting Valence, Emotions, and
Other Affectual States from Text. DOI: 10.1016/B978-
0-08-100508-8.00009-6
Newman, M.E.J. (2006). Modularity and community
structure in networks. Proceedings of the National
Academy of Sciences, 103(23), pp.8577–8582. DOI:
10.1073/pnas.0601602103
Pop, A.M., (2018), " International Scientific Conference
Strategies XXI.".Carol I National Defence University
Publishing House, Volume 2, p.114-120.
Saini, S., Punhani, R., Bathla R., and Shukla V. (2019).
Sentiment Analysis on Twitter Data using R, 2019
International Conf. on Automation, Computational and
Technology Management (ICACTM), pp. 68-72.
Shevtsov, A., Tzagkarakis, C., Antonakaki, D., Pratikakis, P.
and Ioannidis, S. (2022). Twitter Dataset on the Russo-
Ukrainian War. DOI: 10.48550/arXiv.2204.08530
Smith, K. (2019). 122 Amazing Social Media Statistics and
Facts. Brandwatch. Available at: https://www.brand
watch.com/blog/amazing-social-media-statistics-and-
facts/ [Accessed 9 Sep. 2022].
Wajahat, A., Nazir, A., Akhtar, F., Qureshi, S., Razaque, F.,
and Shakeel, A. (2020). Interactively visualize and
analyze social network Gephi. 3rd International Conf.
on Computing, Mathematics and Engineering
Technologies (iCoMET), IEEE, pp. 1-9. DOI:
10.1109/iCoMET48670.2020.9073812
Younis, E. M (2015). Sentiment Analysis and Text Mining for
Social Media Microblogs using Open Source Tools: An
Empirical Study. International Journal of Computer
Applications. 112, pp. 44-48. DOI: 10.5120/19665-
1366
Zhu, Y., Haq, E. U., Lee, L., Tyson, G. and Hui, P. (2022).
A Reddit Dataset for the Russo-Ukrainian Conflict in
2022. DOI: 10.48550/arXiv.2206.05107