(d)  the  subsequent  organizational  impact  stemming 
from participants' changed behavior. Additionally, it 
also considers (e) the economic benefits or overall 
human welfare derived from  the  training  (Cannon-
Bowers, 2008; Falletta, 1998; Smidt et al., 2009). 
ACKNOWLEDGEMENT 
This  work  was  supported  by  the  Tech  For  Future, 
Centre of Expertise on research in High Tech Systems 
and Materials. 
REFERENCES 
Anthony,  G.  (1996).  Active  Learning  in  a  Constructivist 
Framework.  Educational Studies in Mathematics, 
31(4), 349-369. http://www.jstor.org/stable/3482969  
Bian, Y., Zhou, C., Tian, Y., Wang, P., & Gao, F. (2015). 
The Proteus Effect: Influence of Avatar Appearance on 
Social Interaction in Virtual Environments. HCI,  
Bracq,  M.  S.,  Michinov,  E.,  Arnaldi,  B.,  Caillaud,  B., 
Gibaud,  B.,  Gouranton,  V.,  &  Jannin,  P.  (2019). 
Learning  procedural  skills  with  a  virtual  reality 
simulator: An acceptability study. Nurse Educ Today, 
79,  153-160. 
https://doi.org/10.1016/j.nedt.2019.05.026  
Brammer, S. V., Regan, S. L., Collins, C. M., & Gillespie, G. 
L.  (2022).  Developing  Innovative  Virtual  Reality 
Simulations  to  Increase  Health  Care  Providers' 
Understanding of Social Determinants of Health. Journal 
of Continuing Education in the Health Professions, 
42(1).  https://journals.lww.com/jcehp/Fulltext/2022/ 
04210/Developing_Innovative_Virtual_Reality_Simulat
ions.11.aspx  
Cannon-Bowers, J. A. (2008). Recent advances in scenario-
based  training  for  medical  education.  Curr Opin 
Anaesthesiol, 21(6),  784-789. 
https://doi.org/10.1097/ACO.0b013e3283184435  
Davis, S., Riley, W., Gurses, A. P., Miller, K., & Hansen, H. 
(2008). Failure Modes and Effects Analysis Based on In 
Situ  Simulations:  A  Methodology  to  Improve 
Understanding of Risks and Failures. In K. Henriksen, J. 
B. Battles, M. A. Keyes, & M. L. Grady (Eds.), Advances 
in Patient Safety: New Directions and Alternative 
Approaches (Vol. 3: Performance and Tools). 
https://www.ncbi.nlm.nih.gov/pubmed/21249922  
Dorozhkin, D., Olasky,  J., Jones, D. B.,  Schwaitzberg, S. 
D., Jones, S. B., Cao, C. G. L., Molina, M., Henriques, 
S., Wang, J., Flinn, J., & De, S. (2017). OR fire virtual 
training  simulator:  design  and  face  validity.  Surg 
Endosc, 31(9),  3527-3533. 
https://doi.org/10.1007/s00464-016-5379-7  
Falletta, S. V. (1998). Evaluating Training Programs: The 
Four  Levels:  Donald  L.  Kirkpatrick,  Berrett-Koehler 
Publishers,  San  Francisco,  CA,  1996,  229  pp.  The 
American Journal of Evaluation, 19(2),  259-261. 
https://doi.org/https://doi.org/10.1016/S1098-
2140(99)80206-9  
Fuhrt. (2008). Immersive Virtual Reality. In B. Furht (Ed.), 
Encyclopedia of Multimedia  (pp.  345-346).  Springer 
US. https://doi.org/10.1007/978-0-387-78414-4_85  
Institute of Medicine Committee on Quality of Health Care 
in, A. (2000). In L. T. Kohn, J. M. Corrigan, & M. S. 
Donaldson (Eds.), To Err is Human: Building a Safer 
Health System.  National  Academies  Press  (US) 
Copyright 2000 by the National Academy of Sciences. 
All rights reserved. https://doi.org/10.17226/9728  
Macnamara, A. F., Bird, K., Rigby, A., Sathyapalan, T., & 
Hepburn,  D.  (2021).  High-fidelity  simulation  and 
virtual  reality:  an  evaluation  of  medical  students' 
experiences. BMJ Simul Technol Enhanc Learn, 7(6), 
528-535. https://doi.org/10.1136/bmjstel-2020-000625  
Miranda, E. (2022, 2022//). Moscow Rules: A Quantitative 
Exposé. Agile Processes in Software Engineering and 
Extreme Programming, Cham. 
Navarro, J., Peña, J., Cebolla, A., & Baños, R. (2022). Can 
Avatar Appearance Influence Physical Activity? User-
Avatar  Similarity  and  Proteus  Effects  on  Cardiac 
Frequency  and  Step  Counts.  Health Commun, 37(2), 
222-229.  https://doi.org/10.1080/10410236.2020. 
1834194  
Pacheco  Granda,  F.  A.,  &  Salik,  I.  (2023).  Simulation 
Training  and  Skill  Assessment  in  Critical  Care.  In 
StatPearls.  StatPearls  Publishing  Copyright  ©  2023, 
StatPearls Publishing LLC.  
Pottle, J. (2019). Virtual reality and the transformation of 
medical  education.  Future Healthc J, 6(3),  181-185. 
https://doi.org/10.7861/fhj.2019-0036  
Reedy, G. B. (2015). Using Cognitive Load Theory to Inform 
Simulation  Design  and  Practice.  Clinical Simulation in 
Nursing, 11(8),  355-360.  https://doi.org/https://doi.org/ 
10.1016/j.ecns.2015.05.004  
Ruthenbeck, G. S., & Reynolds, K. J. (2015). Virtual reality 
for  medical  training:  the  state-of-the-art.  Journal of 
Simulation, 9(1),  16-26. 
https://doi.org/10.1057/jos.2014.14  
Smidt, A., Balandin, S., Sigafoos, J., & Reed, V. A. (2009). 
The  Kirkpatrick  model:  A  useful  tool  for  evaluating 
training outcomes. J Intellect Dev Disabil, 34(3), 266-
274. https://doi.org/10.1080/13668250903093125  
Tursø-Finnich, T., Jensen, R. O., Jensen, L. X., Konge, L., 
&  Thinggaard,  E.  (2023).  Virtual  Reality  Head-
Mounted Displays in Medical Education: A Systematic 
Review.  Simulation in Healthcare, 18(1),  42-50. 
https://doi.org/10.1097/sih.0000000000000636  
Walden, A., Garvin, L., Smerek, M., & Johnson, C. (2020). 
User-centered design principles in the development of 
clinical  research  tools.  Clin Trials, 17(6),  703-711. 
https://doi.org/10.1177/1740774520946314  
Yunoki,  K.,  &  Sakai,  T.  (2018).  The  role  of  simulation 
training in anesthesiology resident education. J Anesth, 
32(3),  425-433.  https://doi.org/10.1007/s00540-018-
2483-y