ACKNOWLEDGEMENTS 
This  work  has  received  funding  from  the  project 
ForPharmacy  (P2020-COMPETE-FEDER  number 
070053). This work  has also received funding  from 
projects UIDB/00760/2020 and UIDP/00760/2020. 
REFERENCES 
Aguilera,  A.,  Mellado,  D.,  &  Rojas,  F.  (2023).  An 
Assessment  of  In-the-Wild  Datasets  for  Multimodal 
Emotion Recognition. Sensors, 23(11). 
American Psychiatric Association. (2013). Diagnostic and 
statistical manual of mental disorders (5th ed.). 
Anshul, A., Pranav, G. S., Rehman, M. Z. U., & Kumar, N. 
(2023).  A  Multimodal  Framework  for  Depression 
Detection  During  COVID-19  via  Harvesting  Social 
Media.  IEEE Transactions on Computational Social 
Systems. 
Ayers, S., & de Visser, R. (2021). Psychology for Medicine 
& Healthcare (3rd Edition) (Sage Publishing). 
Bains,  N.,  &  Abdijadid,  S.  (2023,  April  10).  Major 
Depressive Disorder.  StatPeals. 
https://www.ncbi.nlm.nih.gov/books/NBK559078/ 
Braquehais,  M.  D.,  &  Vargas-Cáceres,  S.  (2023). 
Psychiatric  Issues  Among  Health  Professionals.  In 
Medical Clinics of North America (Vol. 107, Issue 1, 
pp. 131–142). W.B. Saunders.  
Cai, Y., Li, X., & Li, J. (2023). Emotion Recognition Using 
Different  Sensors,  Emotion  Models,  Methods  and 
Datasets: A Comprehensive Review. In Sensors (Vol. 
23, Issue 5). MDPI.  
Chikersal, P., Doryab, A., Tumminia, M., Villalba, D. K., 
Dutcher,  J.  M.,  Liu,  X.,  Cohen,  S.,  Creswell,  K.  G., 
Mankoff, J., David Creswell, J., Goel, M., & Dey, A. 
K. (2021). Detecting depression and predicting its onset 
using  longitudinal  symptoms  captured  by  passive 
sensing:  A  machine  learning  approach  with  robust 
feature  selection.  ACM Transactions on Computer-
Human Interaction, 28(1).  
Craske,  M.  G.,  Stein,  M.  B.,  Eley,  T.  C.,  Milad,  M.  R., 
Holmes, A., Rapee, R. M., & Wittchen, H. U. (2017). 
Anxiety disorders. Nature Reviews Disease Primers, 3.  
Dee,  J.,  Dhuhaibawi,  N.,  &  Hayden,  J.  C.  (2022).  A 
systematic review and pooled prevalence of burnout in 
pharmacists.  In  International Journal of Clinical 
Pharmacy.  Springer  Science  and  Business  Media 
Deutschland GmbH.  
Dias,  D.,  &  Cunha,  J.  P.  S.  (2018).  Wearable  health 
devices—vital  sign  monitoring,  systems  and 
technologies. In Sensors (Switzerland) (Vol. 18, Issue 
8). MDPI AG.  
Dias, T., Vitorino, J., Oliveira, J., Oliveira, N., Maia, E., & 
Praça, I. (2023). IFEED: Interactive Facial Expression 
and Emotion Detection Dataset. Zenodo.  
Dogan,  G.,  &  Akbulut,  F.  P.  (2023).  Multi-modal  fusion 
learning through biosignal, audio, and visual content for 
detection  of  mental  stress.  Neural Computing and 
Applications, 35(34), 24435–24454. 
Edú‐valsania,  S.,  Laguía,  A.,  &  Moriano,  J.  A.  (2022). 
Burnout:  A  Review  of  Theory  and  Measurement.  In 
International Journal of Environmental Research and 
Public Health (Vol. 19, Issue 3). MDPI.  
Eom,  S.,  Eom,  S.,  &  Washington,  P.  (2023).  SIM-CNN: 
Self-Supervised Individualized Multimodal Learning 
for Stress Prediction on Nurses Using Biosignals. 
Escobar-Linero, E., Muñoz-Saavedra, L., Luna-Perejón, F., 
Sevillano,  J.  L.,  &  Domínguez-Morales,  M.  (2023). 
Wearable  Health  Devices  for  Diagnosis  Support: 
Evolution and Future Tendencies. In Sensors (Vol. 23, 
Issue 3). MDPI.  
Francese, R., & Attanasio, P. (2022). Emotion detection for 
supporting depression screening. Multimedia Tools and 
Application. 
G.L. Bajaj Institute of Technology & Management. (2022). 
2022 International Conference on Computational 
Intelligence and Sustainable Engineering Solutions 
(CISES) 20-21 May 2022. 
Gregório, J., Cavaco, A. M., & Lapão, L. V. (2017). How 
to  best  manage  time  interaction  with  patients? 
Community pharmacist workload and service provision 
analysis.  Research in Social and Administrative 
Pharmacy, 13(1), 133–147. 
Gupta, A., Raut, A., Yadav, R., Kumar, M., & Chaurasiya, 
V.  K.  (2022).  A  Hybrid  Approach  based  Stress 
Monitoring System for Office Environment using IoT. 
INDICON 2022 - 2022 IEEE 19th India Council 
International Conference. 
Harrison,  P.,  Cowen,  P.,  Burns,  T.,  &  Fazel,  M.  (2017). 
Shorter Oxford Textbook of Psychiatry. Shorter Oxford 
Textbook of Psychiatry. 
Hill, J. E., Harris, C., Danielle L., C., Boland, P., Doherty, 
A. J., Benedetto, V., Gita, B. E., & Clegg, A. J. (2022). 
The  prevalence  of  mental  health  conditions  in 
healthcare  workers  during  and  after  a  pandemic: 
Systematic  review  and  meta-analysis.  In  Journal of 
Advanced Nursing (Vol. 78, Issue 6, pp. 1551–1573). 
John Wiley and Sons Inc. 
Jakovljevic,  B.,  Stojanovic,  K.,  Turnic,  T.  N.,  & 
Jakovljevic,  V.  L.  (2021).  Burnout  of  physicians, 
pharmacists  and  nurses  in  the  course  of  the  covid-19 
pandemic:  A  serbian  cross-sectional  questionnaire 
study.  International Journal of Environmental 
Research and Public Health, 18(16). 
Lerner,  D.,  Adler,  D.  A.,  Rogers,  W.  H.,  Chang,  H., 
Lapitsky, L., McLaughlin, T., & Reed, J. (2010). Work 
Performance  of  Employees  With  Depression:  The 
Impact of Work Stressors. American Journal of Health 
Promotion : AJHP, 24(3), 205. 
Lichstein, K. L., Durrence, H. H., Taylor, D. J., Bush, A. J., 
&  Riedel,  B.  W.  (2003).  Quantitative  criteria  for 
insomnia.  Behaviour Research and Therapy,  41(4), 
427–445. 
Lu, L., Zhang, J., Xie, Y., Gao, F., Xu, S., Wu, X., & Ye, 
Z.  (2020).  Wearable  health  devices  in  health  care: 
Narrative  systematic  review.  In  JMIR mHealth and 
uHealth (Vol. 8, Issue 11). JMIR Publications Inc.