Sustainable  Energy  Reviews,  53,  697–708. 
https://doi.org/10.1016/J.RSER.2015.08.061 
Klir,  G.  J.,  &  Yuan,  Bo.  (1995).  Fuzzy  Sets  and  Fuzzy 
Logic Theory and Applications. Prentice Hall, 574. 
Kolodner,  J.  (2014).  Case-Based  Reasoning.  Morgan 
Kaufmann. 
Kong, X., Cai, C. S., & Hu, J. (2017). The State-of-the-Art 
on Framework of Vibration-Based Structural Damage 
Identification  for  Decision  Making.  Applied  Sciences 
2017,  Vol.  7,  Page  497,  7(5),  497. 
https://doi.org/10.3390/APP7050497 
Kulkarni,  T.,  Toksha,  B.,  Shirsath,  S.,  Pankade,  S.,  & 
Autee,  A.  T.  (2023).  Construction  and  Praxis  of  Six 
Sigma  DMAIC  for  Bearing  Manufacturing  Process. 
Materials  Today:  Proceedings,  72,  1426–1433. 
https://doi.org/10.1016/J.MATPR.2022.09.342 
Kwon, S. J., Park, J., Choi, J. H., Lim, J. H., Lee, S. E., & 
Kim,  J.  (2019).  Polynomial  Regression method-based 
Remaining  Useful  Life  Prediction  and  Comparative 
Analysis  of  Two  Lithium  Nickel  Cobalt  Manganese 
Oxide  Batteries.  2019  IEEE  Energy  Conversion 
Congress  and  Exposition,  ECCE  2019,  2510–2515. 
https://doi.org/10.1109/ECCE.2019.8912625 
Liu,  F.  T.,  Ting,  K.  M.,  &  Zhou,  Z.  H.  (2008).  Isolation 
forest. Proceedings - IEEE International Conference on 
Data  Mining,  ICDM,  413–422.  https://doi.org/ 
10.1109/ICDM.2008.17 
Marko  Bohanec.  (2009).  Decision Making:  A  Computer-
Science  and  Information-Technology  Viewpoint. 
https://hrcak.srce.hr/clanak/114036 
Nectoux,  P.,  Gouriveau,  R.,  Medjaher,  K.,  Ramasso,  E., 
Chebel-Morello,  B.,  Zerhouni,  N.,  &  Varnier,  C. 
(2012).  PRONOSTIA :  An  experimental  platform  for 
bearings accelerated degradation tests. 1–8. 
Pearn, W. L., & Chen, K. S. (1999). Making decisions in 
assessing  process  capability  index  Cpk.  Quality  and 
Reliability Engineering International. 
Rish,  I.  (2001).  An  empirical  study  of  the  naive  Bayes 
classifier.  In  IJCAI  2001  Workshop  on  Empirical 
Methods in Artificial Intelligence , 41–46. 
Singh, M., Øvsthus,  K., Kampen,  A.-L., &  Dhungana, H. 
(n.d.).  Initial  Fault  Identification  for  Procedural 
Decision  Making  Using  Biologically  Inspired 
Condition  Management  System.  The  Unified 
Conference  of   DAMAS,  InCoME  and  TEPEN 
Conferences (UNIfied 2023). 
Singh, M., Øvsthus,  K., Kampen,  A.-L., &  Dhungana, H. 
(2024).  Development  of  a  Biologically  Inspired 
Condition Management System for Equipment. Lecture 
Notes  in  Mechanical  Engineering,  319–331. 
https://doi.org/10.1007/978-3-031-39619-9_23 
Singh,  M.,  &  Pokhrel,  M.  (2018).  A  Fuzzy  logic-
possibilistic  methodology  for  risk-based  inspection 
(RBI)  planning  of  oil  and  gas  piping  subjected  to 
microbiologically  influenced  corrosion  (MIC). 
International  Journal  of  Pressure  Vessels  and  Piping, 
159,  45–54.  https://doi.org/10.1016/J.IJPVP.2017. 
11.005 
Song, L., Wang, H., & Chen, P.  (2018).  Vibration-Based 
Intelligent Fault Diagnosis for Roller Bearings in Low-
Speed  Rotating  Machinery.  IEEE  Transactions  on 
Instrumentation and  Measurement,  67(8),  1887–1899. 
https://doi.org/10.1109/TIM.2018.2806984 
The  Biomimicry  Institute  —  Nature-Inspired  Innovation. 
(n.d.).  Retrieved  May  12,  2023,  from 
https://biomimicry.org/ 
Trillo, J. R., Fernandez, A., & Herrera, F. (2020). HFER: 
Promoting  explainability  in  fuzzy  systems  via 
hierarchical fuzzy exception rules.  IEEE International 
Conference  on  Fuzzy  Systems,  2020-July. 
https://doi.org/10.1109/FUZZ48607.2020.9177575 
Van  Der  Meer,  M.,  Kurth-Nelson,  Z.,  &  Redish,  A.  D. 
(2012).  Information  processing  in  decision-making 
systems.  The  Neuroscientist :  A  Review  Journal 
Bringing  Neurobiology,  Neurology  and  Psychiatry, 
18(4),  342–359.  https://doi.org/10.1177/10738584114 
35128 
Vassiliades,  A.,  Bassiliades,  N.,  &  Patkos,  T.  (2021). 
Argumentation and explainable artificial intelligence: a 
survey.  The  Knowledge  Engineering  Review,  36,  e5. 
https://doi.org/10.1017/S0269888921000011 
Wang, T., Han, Q., Chu, F., & Feng, Z. (2019). Vibration 
based condition monitoring and fault diagnosis of wind 
turbine  planetary  gearbox:  A  review.  Mechanical 
Systems  and  Signal  Processing,  126,  662–685. 
https://doi.org/10.1016/J.YMSSP.2019.02.051 
William, P. E., & Hoffman, M. W. (2011). Identification of 
bearing  faults  using  time  domain  zero-crossings. 
Mechanical  Systems  and  Signal  Processing,  25(8), 
3078–3088.  https://doi.org/10.1016/J.YMSSP.2011. 
06.001.