Du, Y., Huang, T., You, S., Hsieh, M.-H., and Tao, D.
(2022). Quantum circuit architecture search for varia-
tional quantum algorithms. npj Quantum Inf., 8(1):62.
Erd
˝
os, P. and Rényi, A. (1959). On random graphs i. Publ.
math. debrecen, 6(290-297):18.
Fösel, T., Niu, M. Y., Marquardt, F., and Li, L. (2021).
Quantum circuit optimization with deep reinforce-
ment learning. arXiv preprint arXiv:2103.07585.
García-Martín, D., Larocca, M., and Cerezo, M. (2023). Ef-
fects of noise on the overparametrization of quantum
neural networks. arXiv preprint arXiv:2302.05059.
Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. In Proceedings of the Twenty-
Eighth Annual ACM Symposium on Theory of Com-
puting, STOC ’96, page 212–219, New York, NY,
USA. Association for Computing Machinery.
Harrow, A. W., Hassidim, A., and Lloyd, S. (2009). Quan-
tum algorithm for linear systems of equations. Phys.
Rev. Lett., 103:150502.
Hashim, A., Seritan, S., Proctor, T., Rudinger, K., Goss, N.,
Naik, R. K., Kreikebaum, J. M., Santiago, D. I., and
Siddiqi, I. (2023). Benchmarking quantum logic op-
erations relative to thresholds for fault tolerance. npj
Quantum Inf., 9(1):109.
Havlí
ˇ
cek, V., Córcoles, A. D., Temme, K., Harrow, A. W.,
Kandala, A., Chow, J. M., and Gambetta, J. M. (2019).
Supervised learning with quantum-enhanced feature
spaces. Nature, 567(7747):209–212.
Hochreiter, S. (1998). The vanishing gradient problem dur-
ing learning recurrent neural nets and problem solu-
tions. International Journal of Uncertainty, Fuzziness
and Knowledge-Based Systems, 6(02):107–116.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Kobayashi, M., Nakaji, K., and Yamamoto, N. (2022).
Overﬁtting in quantum machine learning and en-
tangling dropout. Quantum Machine Intelligence,
4(2):30.
Lanczos, C. (2012). The Variational Principles of Mechan-
ics. Dover Books on Physics. Dover Publications.
Liu, X., Angone, A., Shaydulin, R., Safro, I., Alexeev, Y.,
and Cincio, L. (2022). Layer vqe: A variational ap-
proach for combinatorial optimization on noisy quan-
tum computers. IEEE Transactions on Quantum En-
gineering, 3:1–20.
Lucas, A. (2014). Ising formulations of many np problems.
Frontiers in Physics, 2.
Martiel, S., Ayral, T., and Allouche, C. (2021). Benchmark-
ing quantum coprocessors in an application-centric,
hardware-agnostic, and scalable way. IEEE Transac-
tions on Quantum Engineering, 2:1–11.
McClean, J. R., Boixo, S., Smelyanskiy, V. N., Babbush,
R., and Neven, H. (2018). Barren plateaus in quantum
neural network training landscapes. Nature communi-
cations, 9(1):4812.
Mitarai, K., Negoro, M., Kitagawa, M., and Fujii, K.
(2018). Quantum circuit learning. Phys. Rev. A,
98:032309.
Peruzzo, A., McClean, J., Shadbolt, P., Yung, M.-H., Zhou,
X.-Q., Love, P. J., Aspuru-Guzik, A., and O’Brien,
J. L. (2014). A variational eigenvalue solver on a pho-
tonic quantum processor. Nat. Commun., 5(1):4213.
Powell, M. J. (1994). A direct search optimization method
that models the objective and constraint functions by
linear interpolation. Springer.
Scala, F., Ceschini, A., Panella, M., and Gerace, D. (2023).
A general approach to dropout in quantum neural
networks. Advanced Quantum Technologies, page
2300220.
Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural Networks, 61:85–117.
Schuld, M., Bergholm, V., Gogolin, C., Izaac, J., and Killo-
ran, N. (2019). Evaluating analytic gradients on quan-
tum hardware. Phys. Rev. A, 99:032331.
Schuld, M., Sweke, R., and Meyer, J. J. (2021). Effect
of data encoding on the expressive power of varia-
tional quantum-machine-learning models. Phys. Rev.
A, 103:032430.
Shor, P. (1994). Algorithms for quantum computation: dis-
crete logarithms and factoring. In Proceedings 35th
Annual Symposium on Foundations of Computer Sci-
ence, pages 124–134.
Sim, S., Johnson, P. D., and Aspuru-Guzik, A. (2019a).
Expressibility and entangling capability of parame-
terized quantum circuits for hybrid quantum-classical
algorithms. Advanced Quantum Technologies,
2(12):1900070.
Sim, S., Johnson, P. D., and Aspuru-Guzik, A. (2019b).
Expressibility and entangling capability of parame-
terized quantum circuits for hybrid quantum-classical
algorithms. Advanced Quantum Technologies,
2(12):1900070.
Skolik, A., McClean, J. R., Mohseni, M., van der Smagt, P.,
and Leib, M. (2021). Layerwise learning for quantum
neural networks. Quantum Machine Intelligence, 3:1–
11.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: A simple way
to prevent neural networks from overﬁtting. Journal
of Machine Learning Research, 15(56):1929–1958.
Stein, J., Poppel, M., Adamczyk, P., Fabry, R., Wu, Z.,
Kölle, M., Nüßlein, J., Schuman, D., Altmann, P.,
Ehmer, T., et al. (2023). Quantum surrogate modeling
for chemical and pharmaceutical development. arXiv
preprint arXiv:2306.05042.
Stougiannidis, P., Stein, J., Bucher, D., Zielinski, S.,
Linnhoff-Popien, C., and Feld, S. (2023). Approxi-
mative lookup-tables and arbitrary function rotations
for facilitating nisq-implementations of the hhl and
beyond. In 2023 IEEE International Conference on
Quantum Computing and Engineering (QCE), vol-
ume 01, pages 151–160.
Wang, H., Gu, J., Ding, Y., Li, Z., Chong, F. T., Pan, D. Z.,
and Han, S. (2022). Quantumnat: Quantum noise-
aware training with noise injection, quantization and
normalization. In Proceedings of the 59th ACM/IEEE
Design Automation Conference, DAC ’22, page 1–6,
New York, NY, USA. Association for Computing Ma-
chinery.
ICAART 2024 - 16th International Conference on Agents and Artiﬁcial Intelligence
1134