
Bastani,  H.,  Zhang,  D.,  &  Zhang,  H.  (2020).  Applied 
Machine Learning in  Operations Management.  SSRN 
Electronic  Journal.  https://doi.org/10.2139/ssrn.3736 
466 
Evans, J. M., Qiu, M., MacKinnon, M., Green, E., Peterson, 
K.,  &  Kaizer,  L.  (2016).  A  multi-method  review  of 
home-based  chemotherapy.  In  European  journal  of 
cancer care (Vol. 25, Issue 5). https://doi.org/10.1111/ 
ecc.12408 
Gupta,  S.,  Starr,  M.  K.,  Farahani,  R.  Z.,  &  Asgari,  N. 
(2021). OM Forum—Pandemics/Epidemics: Challenges 
and Opportunities for Operations Management Research. 
https://doi.org/10.1287/msom.2021.0965,  24(1),  1–23. 
https://doi.org/10.1287/MSOM.2021.0965 
Hadid,  M.,  Elomri,  A.,  El  Mekkawy,  T.,  Jouini,  O., 
Kerbache,  L.,  &  Hamad,  A.  (2021).  Operations 
Management of Outpatient Chemotherapy Process: An 
Optimization-Oriented  Comprehensive  Review. 
Operations Research Perspectives, 100214. 
Hadid, M., Elomri, A., El Mekkawy, T., Kerbache, L., El 
Omri, A., El Omri, H., Taha, R. Y., Hamad, A. A., & 
Al  Thani,  M.  H.  J.  (2022).  Bibliometric  analysis  of 
cancer  care  operations  management:  current  status, 
developments,  and  future  directions.  Health  Care 
Management Science, 1–20. 
Houts,  P.  S.,  Lipton,  A.,  Harvey,  H.  A.,  Martin,  B., 
Simmonds, M. A., Dixon, R. H., Longo, S., Andrews, 
T., Gordon, R. A., Meloy, J., & Hoffman, S. L. (1984). 
Nonmedical  costs  to  patients  and  their  families 
associated  with  outpatient  chemotherapy.  Cancer, 
53(11).  https://doi.org/10.1002/1097-0142(19840601) 
53:11<2388::AID-CNCR2820531103>3.0.CO;2-A 
Lamé,  G.,  Jouini,  O.,  &  Stal-Le  Cardinal,  J.  (2016). 
Outpatient chemotherapy planning: A literature review 
with insights from a case study.  IIE Transactions on 
Healthcare  Systems  Engineering,  6(3),  127–139. 
https://doi.org/10.1080/19488300.2016.1189469 
Mandelbaum,  A.,  Momčilović,  P.,  Trichakis,  N.,  Kadish, 
S.,  Leib,  R.,  &  Bunnell,  C.  A.  (2019).  Data-Driven 
Appointment-Scheduling Under Uncertainty: The Case 
of  an  Infusion  Unit  in  a  Cancer  Center. 
Https://Doi.Org/10.1287/Mnsc.2018.3218, 66(1), 243–
270. https://doi.org/10.1287/MNSC.2018.3218 
Mosa,  A.  S.  M.,  Rana,  M.  K.  Z.,  Islam,  H.,  Mosharraf 
Hossain, A. K. M., & Yoo, I. (2021). A smartphone-
based decision support tool  for  predicting  patients at 
risk  of  chemotherapy-induced  nausea  and  vomiting: 
Retrospective study on app development using decision 
tree  induction.  JMIR  MHealth  and  UHealth,  9(12). 
https://doi.org/10.2196/27024 
Pianykh,  O.  S.,  Guitron,  S.,  Parke,  D.,  Zhang,  C., 
Pandharipande, P., Brink, J., & Rosenthal, D. (2020). 
Improving  healthcare  operations  management  with 
machine learning.  Nature Machine Intelligence,  2(5). 
https://doi.org/10.1038/s42256-020-0176-3 
Simchi-Levi, D. (2013). OM Forum—OM Research: From 
Problem-Driven  to  Data-Driven  Research. 
https://doi.org/10.1287/msom.2013.0471, 16(1), 2–10. 
https://doi.org/10.1287/MSOM.2013.0471 
Smith, M., & Carlson, J. (2021). Reducing ED Visits and 
Hospital  Admissions  after  Chemotherapy  with 
Predictive Modeling of Risk Factors. Oncology Issues, 
36(4). https://doi.org/10.1080/10463356.2021.1927638 
Waller,  A.,  Forshaw,  K.,  Bryant,  J.,  &  Mair,  S.  (2014). 
Interventions for preparing patients for chemotherapy 
and radiotherapy: A systematic review. In Supportive 
Care  in  Cancer  (Vol.  22,  Issue  8). 
https://doi.org/10.1007/s00520-014-2303-3 
 
HEALTHINF 2024 - 17th International Conference on Health Informatics
384