Perkins, D. N., Salomon, G., et al. (1992). Transfer of learn-
ing. International encyclopedia of education, 2:6452–
6457.
Qu, S., Chen, G., Zhang, J., Li, Z., He, W., and Tao, D.
(2022). Bmd: A general class-balanced multicen-
tric dynamic prototype strategy for source-free do-
main adaptation. In European Conference on Com-
puter Vision, pages 165–182. Springer.
Reimers, C., Bodesheim, P., Runge, J., and Denzler, J.
(2021). Conditional adversarial debiasing: Towards
learning unbiased classifiers from biased data. In
DAGM German Conference on Pattern Recognition
(DAGM-GCPR), pages 48–62.
Rieger, L., Singh, C., Murdoch, W., and Yu, B. (2020).
Interpretations are useful: penalizing explanations to
align neural networks with prior knowledge. In In-
ternational conference on machine learning, pages
8116–8126. PMLR.
Roh, Y., Lee, K., Whang, S. E., and Suh, C. (2021). Fair-
batch: Batch selection for model fairness. In Interna-
tional Conference on Learning Representations.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Sagawa, S., Koh, P. W., Hashimoto, T. B., and Liang, P.
(2019). Distributionally robust neural networks for
group shifts: On the importance of regularization for
worst-case generalization. In International Confer-
ence on Learning Representations.
Savani, Y., White, C., and Govindarajulu, N. S. (2020).
Intra-processing methods for debiasing neural net-
works. Advances in Neural Information Processing
Systems, 33:2798–2810.
Scope, A., Marchetti, M. A., Marghoob, A. A., Dusza,
S. W., Geller, A. C., Satagopan, J. M., Weinstock,
M. A., Berwick, M., and Halpern, A. C. (2016). The
study of nevi in children: Principles learned and im-
plications for melanoma diagnosis. J. Am. Acad. Der-
matol., 75(4):813–823.
Tartaglione, E., Barbano, C. A., and Grangetto, M. (2021).
End: Entangling and disentangling deep represen-
tations for bias correction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 13508–13517.
Tian, J., Zhang, J., Li, W., and Xu, D. (2021). Vdm-da:
Virtual domain modeling for source data-free domain
adaptation. IEEE Transactions on Circuits and Sys-
tems for Video Technology, 32(6):3749–3760.
Wah, C., Branson, S., Welinder, P., Perona, P., and Be-
longie, S. (2011). The Caltech-UCSD Birds-200-2011
Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology.
Xuhong, L., Grandvalet, Y., and Davoine, F. (2018). Ex-
plicit inductive bias for transfer learning with convolu-
tional networks. In International Conference on Ma-
chine Learning, pages 2825–2834. PMLR.
Yao, Y., Rosasco, L., and Caponnetto, A. (2007). On early
stopping in gradient descent learning. Constructive
Approximation, 26:289–315.
Yu, Z., Li, J., Du, Z., Zhu, L., and Shen, H. T. (2023). A
comprehensive survey on source-free domain adapta-
tion. arXiv preprint arXiv:2302.11803.
Zhang, J. O., Sax, A., Zamir, A., Guibas, L., and Malik, J.
(2020). Side-tuning: a baseline for network adaptation
via additive side networks. In European Conference
on Computer Vision, pages 698–714. Springer.
Zhang, L., Rao, A., and Agrawala, M. (2023). Adding con-
ditional control to text-to-image diffusion models. In
Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 3836–3847.
Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., and Tor-
ralba, A. (2017). Places: A 10 million image database
for scene recognition. IEEE Transactions on Pattern
Analysis and Machine Intelligence.
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H.,
Xiong, H., and He, Q. (2020). A comprehensive sur-
vey on transfer learning. Proceedings of the IEEE,
109(1):43–76.
APPENDIX
Colorful Patches Examples
Figure 7 displays examples of the original biased
training data and the melanomata with inpainted col-
orful patches we added to the test distribution. The
resulting less-biased test distribution contains benign
nevi and melanomata images with colorful patches.
(a) Original images of class nevus.
(b) Artificially inpainted melanoma images.
Figure 7: Some examples from biased training and less bi-
ased test distribution.
CelebA Examples
Figure 8 displays examples from the celebA dataset
(Liu et al., 2015) described in Section 4.3. We use
the implementation provided by (Koh et al., 2021) but
rebalance and resplit the dataset. Hence, the resulting
dataset is classwise balanced.
Reducing Bias in Pre-Trained Models by Tuning While Penalizing Change
99