Figure 3: The linear RNA that is made by linear splicing is shown on the left, and the circRNA that is made by back splicing
is shown on the right. These two types of primaries (convergent and divergent) work in different directions
5 CONCLUSIONS
The qRT-PCR approach, as described in the protocol,
is capable of detecting hsa_circ_0003416 in the
plasma of patients diagnosed with PAH associated
with CHD at RSUP Dr. Sardjito Yogyakarta.
Additional research, utilizing a sufficient number of
samples, is required to ascertain the expression
pattern of hsa_circ_0003416.
ACKNOWLEDGEMENTS
This work was supported by Hibah Penelitian Dana
Masyarakat (Damas) FKKMK UGM 2023. We also
thank the PAH team from FKKMK UGM and RSUP
Dr. Sardjito Yogyakarta for their invaluable support
in supplying the samples.
REFERENCES
Dieterich, C., & Papantonis, A. (2018). Circular RNAs
methods and protocols. Methods in Molecular Biology,
1724. https://doi.org/10.1007/978-1-4939-7562-4
Dinarti, L. K., Hartopo, A. B., Kusuma, A. D., Satwiko, M.
G., Hadwiono, M. R., Pradana, A. D., & Anggrahini,
D. W. (2020). The COngenital HeARt Disease in adult
and Pulmonary Hypertension (COHARD-PH) registry:
a descriptive study from single-center hospital registry
of adult congenital heart disease and pulmonary
hypertension in Indonesia. BMC Cardiovascular
Disorders, 20(1), 163. https://doi.org/10.1186/s12872-
020-01434-z
Greene, J., Baird, A.-M., Brady, L., Lim, M., Gray, S. G.,
McDermott, R., & Finn, S. P. (2017). Circular RNAs:
biogenesis, function and role in human diseases.
Frontiers in Molecular Biosciences, 4, 38.
https://doi.org/10.3389/fmolb.2017.00038
Huang, Y., Su, D., Ye, B., Huang, Y., Qin, S., Chen, C.,
Zhao, Y., & Pang, Y. (2022). Expression and clinical
significance of circular RNA hsa_circ_0003416 in
pediatric pulmonary arterial hypertension associated
with congenital heart disease. Journal of Clinical
Laboratory Analysis, 36(4), e24273.
https://doi.org/10.1002/jcla.24273
Panda, A. C., Abdelmohsen, K., & Gorospe, M. (2017).
RT-qPCR detection of senescence-associated circular
RNAs. Methods in Molecular Biology, 1534, 79–87.
https://doi.org/10.1007/978-1-4939-6670-7_7
Rana, B., & Joshi, G. K. (2023). Electrophoresis: Basic
principle, types, and applications. In Basic
biotechniques for bioprocess and bioentrepreneurship
(pp. 183–193). Academic Press.
https://doi.org/10.1016/B978-0-12-816109-8.00011-8
Sharma, A. R., Bhattacharya, M., Bhakta, S., Saha, A., Lee,
S.-S., & Chakraborty, C. (2021). Recent research
progress on circular RNAs: Biogenesis, properties,
functions, and therapeutic potential. Molecular
Therapy Nucleic Acids, 25, 355–371.
https://doi.org/10.1016/j.omtn.2021.05.022
Tang, Y., Bao, J., Hu, J., Liu, L., & Xu, D.-Y. (2021).
Circular RNA in cardiovascular disease: Expression,
mechanisms and clinical prospects. Journal of Cellular
and Molecular Medicine, 25(4), 1817–1824.
https://doi.org/10.1111/jcmm.16203
Wen, G., Zhou, T., & Gu, W. (2021). The potential of using
blood circular RNA as liquid biopsy biomarker for