Pรกl Type Interpolation Problems with Additional Value Nodes
Poornima Tiwari
Department of Mathematics and Statistics, The Bhopal School of Social Sciences, Bhopal, M.P., India
Keywords: PTIP, Regularity, Roots of Unity, Value Nodes, 2020 Mathematics Subject Classification: 41A05.
Abstract: The author termed Pรกl type interpolation problems as ๐๐๐ผ๐. In this paper the regularity of
๏บ
0, 1
๏ป
โ๐๐๐ผ๐ and
๏บ
0, 2
๏ป
โ๐๐๐ผ๐, with addition of two non-zero complex nodes ยฑ๐ or two real nodes ยฑ1 at value nodes for pairs
of considered polynomials is evaluated.
1 INTRODUCTION
L. G. Pรกl 1975, introduced a new kind of
Interpolation on zeros of two different Polynomials.
It involves of finding a polynomial of degree (๐+
๐โ1), that has prescribed values at ๐ pairwise
distinct nodes and prescribed values for ๐
๎ฏง๎ฏ
derivative at ๐ pairwise distinct nodes. These nodes
are called value nodes and derivative nodes
respectively.
Let
๐
๎ฏก
be the set of polynomials of degree less than
or equal to ๐ with complex coefficients. Let ๐ด(๐ง) โ
๐
๎ฏก
and ๐ต
(
๐ง
)
โ๐
๎ฏ
, then for a given positive integer
๐ the problem of
(
0, ๐
)
โ๐๐๐ผ๐ on the pair {๐ด
(
๐ง
)
,
๐ต(๐ง)}, is to determine a polynomial ๐
(
๐ง
)
โ๐
๎ฏก๎ฌพ๎ฏ ๎ฌฟ๎ฌต
,
which assumes arbitrary prescribed values at the
zeros of ๐ด
(
๐ง
)
and arbitrary prescribed values of the
๐
๎ฏง๎ฏ
derivative at the zeros of ๐ต
(
๐ง
)
. The problem is
regular if and only if any ๐(๐ง) satisfying
๐
(
๐ฆ
๎ฏ
)
=0; where ๐ด
(
๐ฆ
๎ฏ
)
=0 ; ๐=1,2,โฆ,๐,
๐
(๎ฏฅ)
๎ตซ๐ง
๎ฏ
๎ตฏ=0; where ๐ต๎ตซ๐ง
๎ฏ
๎ตฏ=0 ; ๐=1,2,โฆ,๐,
vanishes identically. Here the zeros of ๐ด
(
๐ง
)
, ๐ต
(
๐ง
)
are
assumed to be simple.
(De Bruin and Sharma 2003) observed regularity of
๎ตซ0, ๐
๎ฌต
,โฆ,๐
๎ฏค
๎ตฏโ๐๐๐ผ๐ on the zeros of (๐ง
๎ฏก
โ๐ผ
๎ฌด
๎ฏก
),
(๐ง
๎ฏก
โ๐ผ
๎ฌต
๎ฏก
), โฆ , (๐ง
๎ฏก
โ๐ผ
๎ฏค
๎ฏก
) with 0<๐ผ
๎ฌด
< ๐ผ
๎ฌต
<, โฆ , <
๐ผ
๎ฏค
.
(De Bruin 2005) explored necessary and sufficient
condition for regularity of
(
0, ๐
)
โ๐๐๐ผ๐ with respect
to exchanging value-nodes and derivative-nodes.
(De Bruin and Dikshit 2005) examined regularity of
(
0, ๐
)
โ๐๐๐ผ๐ on the pair
{
(
๐ง
๎ฏ
โ1
)(
๐งโ๐
)
,
(
๐ง
๎ฏก
โ
1
)
}
, where ๐ and ๐ are given positive integers and
๐
is not a zero of the polynomial
(
๐ง
๎ฏ
โ1
)
. They
determined largest domain for
๐, which ensures
regularity of the problem. They observed that
(
0, ๐
)
โ๐๐๐ผ๐ on the pair
{
(
๐ง
๎ฏ
โ1
)(
๐งโ๐
)
,
(
๐ง
๎ฏก
โ
1
)
}
, for positive integers ๐ and ๐ are not regular, if
๐> ๐+1. For the case, ๐โค๐+1 and on the basis
of relationship between the positive integers ๐ and ๐,
they explored
(
0, ๐
)
โ on some different pairs and
found those problems are regular under certain
conditions.
(Dikshit 2003) considered ๐๐๐ผ๐ involving
Mรถbius transform of zeros of (๐ง
๎ฏก
+1) and (๐ง
๎ฏก
โ
1) with one or two extra derivative nodes.
(De Bruin 2005) investigated regularity of
(
0, ๐
)
โ๐๐๐ผ๐ on zeros of the pair
{๐ค
๎ฏก๎ฌพ๎ฏ
(
๎ฐ
)
(
๐ง
)
, ๐ค
๎ฏก
(
๎ฐ
)
(
๐ง
)
}, where
๐ผ be a complex number
with
๐ผ
๎ฌถ
, ๐ผ
๎ฏ
, ๐ผ
๎ฏก
, ๐ผ
๎ฏก๎ฌพ๎ฏ
โ 1 ; ๐, ๐โฅ1.
The method of considering non-uniformly
distributed nodes on unit disk is generalized, by
involving the Mรถbius transform of zeros of (๐ง
๎ฌถ๎ฏก
โ
๐
๎ฌถ๎ฏก
) on the circle
|
๐ง
|
= ๐
๏ฑ
(Mandoli and Pathak
2008).
(
0, 1
)
โ๐๐๐ผ๐ are found to be regular for
following pairs, where ๐
๎ฏ
(๐ง) โ๐
๎ฏ
and ๐
๎ฏก
(๐ง) โ๐
๎ฏก
with simple zeros, ๐ด
๎ฏ
(๐ง) and ๐ต
๎ฏก
(๐ง) are the sets of
zeros of the polynomials ๐
๎ฏ
(๐ง) and ๐
๎ฏก
(๐ง)
respectively such that ๐ต
๎ฏก
(๐ง) โ๐ด
๎ฏ
(๐ง) (Modi et al
2012)
โ
{
๐
๎ฏ
(
๐ง
)
,
(
๐งโ๐
)
๐
๎ฏก
(
๐ง
)
}
.
โ
{
(
๐งโ๐
)
๐
๎ฏ
(
๐ง
)
, ๐
๎ฏก
(
๐ง
)
}
.
โ
{
๐
๎ฏ
(
๐ง
)
,
(
๐งโ๐
๎ฌต
)(
๐งโ๐
๎ฌถ
)
๐
๎ฏก
(
๐ง
)
}
;
๐
๎ฌต
โ ๐
๎ฌถ
.