Pรกl Type Interpolation Problems with Additional Value Nodes
Poornima Tiwari
Department of Mathematics and Statistics, The Bhopal School of Social Sciences, Bhopal, M.P., India
Keywords: PTIP, Regularity, Roots of Unity, Value Nodes, 2020 Mathematics Subject Classification: 41A05.
Abstract: The author termed Pรกl type interpolation problems as ๐‘ƒ๐‘‡๐ผ๐‘ƒ. In this paper the regularity of
๏ˆบ
0, 1
๏ˆป
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ and
๏ˆบ
0, 2
๏ˆป
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ, with addition of two non-zero complex nodes ยฑ๐œ or two real nodes ยฑ1 at value nodes for pairs
of considered polynomials is evaluated.
1 INTRODUCTION
L. G. Pรกl 1975, introduced a new kind of
Interpolation on zeros of two different Polynomials.
It involves of finding a polynomial of degree (๐‘š+
๐‘›โˆ’1), that has prescribed values at ๐‘š pairwise
distinct nodes and prescribed values for ๐‘Ÿ
๎ฏง๎ฏ›
derivative at ๐‘› pairwise distinct nodes. These nodes
are called value nodes and derivative nodes
respectively.
Let
๐œ‹
๎ฏก
be the set of polynomials of degree less than
or equal to ๐‘› with complex coefficients. Let ๐ด(๐‘ง) โˆˆ
๐œ‹
๎ฏก
and ๐ต
(
๐‘ง
)
โˆˆ๐œ‹
๎ฏ 
, then for a given positive integer
๐‘Ÿ the problem of
(
0, ๐‘Ÿ
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on the pair {๐ด
(
๐‘ง
)
,
๐ต(๐‘ง)}, is to determine a polynomial ๐‘ƒ
(
๐‘ง
)
โˆˆ๐œ‹
๎ฏก๎ฌพ๎ฏ ๎ฌฟ๎ฌต
,
which assumes arbitrary prescribed values at the
zeros of ๐ด
(
๐‘ง
)
and arbitrary prescribed values of the
๐‘Ÿ
๎ฏง๎ฏ›
derivative at the zeros of ๐ต
(
๐‘ง
)
. The problem is
regular if and only if any ๐‘ƒ(๐‘ง) satisfying
๐‘ƒ
(
๐‘ฆ
๎ฏœ
)
=0; where ๐ด
(
๐‘ฆ
๎ฏœ
)
=0 ; ๐‘–=1,2,โ€ฆ,๐‘›,
๐‘ƒ
(๎ฏฅ)
๎ตซ๐‘ง
๎ฏ
๎ตฏ=0; where ๐ต๎ตซ๐‘ง
๎ฏ
๎ตฏ=0 ; ๐‘—=1,2,โ€ฆ,๐‘š,
vanishes identically. Here the zeros of ๐ด
(
๐‘ง
)
, ๐ต
(
๐‘ง
)
are
assumed to be simple.
(De Bruin and Sharma 2003) observed regularity of
๎ตซ0, ๐‘š
๎ฌต
,โ€ฆ,๐‘š
๎ฏค
๎ตฏโˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on the zeros of (๐‘ง
๎ฏก
โˆ’๐›ผ
๎ฌด
๎ฏก
),
(๐‘ง
๎ฏก
โˆ’๐›ผ
๎ฌต
๎ฏก
), โ€ฆ , (๐‘ง
๎ฏก
โˆ’๐›ผ
๎ฏค
๎ฏก
) with 0<๐›ผ
๎ฌด
< ๐›ผ
๎ฌต
<, โ€ฆ , <
๐›ผ
๎ฏค
.
(De Bruin 2005) explored necessary and sufficient
condition for regularity of
(
0, ๐‘Ÿ
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ with respect
to exchanging value-nodes and derivative-nodes.
(De Bruin and Dikshit 2005) examined regularity of
(
0, ๐‘Ÿ
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on the pair
{
(
๐‘ง
๎ฏ 
โˆ’1
)(
๐‘งโˆ’๐œ
)
,
(
๐‘ง
๎ฏก
โˆ’
1
)
}
, where ๐‘š and ๐‘› are given positive integers and
๐œ
is not a zero of the polynomial
(
๐‘ง
๎ฏ 
โˆ’1
)
. They
determined largest domain for
๐œ, which ensures
regularity of the problem. They observed that
(
0, ๐‘Ÿ
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on the pair
{
(
๐‘ง
๎ฏ 
โˆ’1
)(
๐‘งโˆ’๐œ
)
,
(
๐‘ง
๎ฏก
โˆ’
1
)
}
, for positive integers ๐‘š and ๐‘› are not regular, if
๐‘Ÿ> ๐‘š+1. For the case, ๐‘Ÿโ‰ค๐‘š+1 and on the basis
of relationship between the positive integers ๐‘š and ๐‘›,
they explored
(
0, ๐‘Ÿ
)
โˆ’ on some different pairs and
found those problems are regular under certain
conditions.
(Dikshit 2003) considered ๐‘ƒ๐‘‡๐ผ๐‘ƒ involving
Mรถbius transform of zeros of (๐‘ง
๎ฏก
+1) and (๐‘ง
๎ฏก
โˆ’
1) with one or two extra derivative nodes.
(De Bruin 2005) investigated regularity of
(
0, ๐‘š
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on zeros of the pair
{๐‘ค
๎ฏก๎ฌพ๎ฏ 
(
๎ฐˆ
)
(
๐‘ง
)
, ๐‘ค
๎ฏก
(
๎ฐˆ
)
(
๐‘ง
)
}, where
๐›ผ be a complex number
with
๐›ผ
๎ฌถ
, ๐›ผ
๎ฏ 
, ๐›ผ
๎ฏก
, ๐›ผ
๎ฏก๎ฌพ๎ฏ 
โ‰ 1 ; ๐‘›, ๐‘šโ‰ฅ1.
The method of considering non-uniformly
distributed nodes on unit disk is generalized, by
involving the Mรถbius transform of zeros of (๐‘ง
๎ฌถ๎ฏก
โˆ’
๐œŒ
๎ฌถ๎ฏก
) on the circle
|
๐‘ง
|
= ๐œŒ
๏‡ฑ
(Mandoli and Pathak
2008).
(
0, 1
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ are found to be regular for
following pairs, where ๐‘Ž
๎ฏ 
(๐‘ง) โˆˆ๐œ‹
๎ฏ 
and ๐‘
๎ฏก
(๐‘ง) โˆˆ๐œ‹
๎ฏก
with simple zeros, ๐ด
๎ฏ 
(๐‘ง) and ๐ต
๎ฏก
(๐‘ง) are the sets of
zeros of the polynomials ๐‘Ž
๎ฏ 
(๐‘ง) and ๐‘
๎ฏก
(๐‘ง)
respectively such that ๐ต
๎ฏก
(๐‘ง) โŠ†๐ด
๎ฏ 
(๐‘ง) (Modi et al
2012)
โ—
{
๐‘Ž
๎ฏ 
(
๐‘ง
)
,
(
๐‘งโˆ’๐œ
)
๐‘
๎ฏก
(
๐‘ง
)
}
.
โ—
{
(
๐‘งโˆ’๐œ
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
, ๐‘
๎ฏก
(
๐‘ง
)
}
.
โ—
{
๐‘Ž
๎ฏ 
(
๐‘ง
)
,
(
๐‘งโˆ’๐œ
๎ฌต
)(
๐‘งโˆ’๐œ
๎ฌถ
)
๐‘
๎ฏก
(
๐‘ง
)
}
;
๐œ
๎ฌต
โ‰ ๐œ
๎ฌถ
.
182
Tiwari, P.
Pรกl Type Interpolation Problems with Additional Value Nodes.
DOI: 10.5220/0012609300003739
Paper published under CC license (CC BY-NC-ND 4.0)
In Proceedings of the 1st International Conference on Arti๏ฌcial Intelligence for Internet of Things: Accelerating Innovation in Industry and Consumer Electronics (AI4IoT 2023), pages 182-184
ISBN: 978-989-758-661-3
Proceedings Copyright ยฉ 2024 by SCITEPRESS โ€“ Science and Technology Publications, Lda.
โ— ๏‰„๐‘Ž
๎ฏ 
(
๐‘ง
)
,
โˆ
๎ฐ‰
๎ฏœ๎ญ€๎ฌต
(
๐‘งโˆ’๐œ
๎ฏœ
)
๐‘
๎ฏก
(
๐‘ง
)
๏‰… ;
๐œ
๎ฏœ
are
pairwise distinct.
โ—
{
๐‘Ž
๎ฏ 
(
๐‘ง
)
, ๐›น(๐‘ก)๐‘
๎ฏก
(
๐‘ง
)
}
;
๐›น
(
๐‘ก
)
โˆˆ๐œ‹
๐‘ก
(๐‘กโ‰ฅ2) be a
polynomial with simple zeros.
โ—
{
(
๐‘งโˆ’๐œ
๎ฌต
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
,
(
๐‘งโˆ’๐œ
๎ฌถ
)
๐‘
๎ฏก
(
๐‘ง
)
}
.
The author (Pathak and Tiwari 2019, Pathak and
Tiwari 2018) revisited regularity of Pรกl type Birkhoff
interpolation and have introduced a new class of
๐‘ƒ๐‘‡๐ผ๐‘ƒ. Also, the author (Pathak and Tiwari 2018,
Pathak and Tiwari 2020) examined the regularity of
โ€˜incompleteโ€™ type ๐‘ƒ๐‘‡๐ผ๐‘ƒ on non-uniformly distributed
nodes by omitting real and complex nodes and
studied โ€˜Incompleteโ€™ type
๐‘ƒ๐‘‡๐ผ๐‘ƒ on zeros of
polynomials with complex coefficients.
2 MAIN RESULTS
The author considered the polynomials ๐‘Ž
๎ฏ 
(๐‘ง) โˆˆ๐œ‹
๎ฏ 
and ๐‘
๎ฏก
(๐‘ง) โˆˆ๐œ‹
๎ฏก
with simple zeros. ๐ด
๎ฏ 
(๐‘ง) and ๐ต
๎ฏก
(๐‘ง)
are the sets of zeros of the polynomials ๐‘Ž
๎ฏ 
(๐‘ง) and
๐‘
๎ฏก
(๐‘ง) respectively such that ๐ต
๎ฏก
(๐‘ง) โŠ†๐ด
๎ฏ 
(๐‘ง). Section
2.1 deals with
(
0, 1
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ, while section 2.2 deals
with
(
0, 2
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ.
(
0,1
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ with two Additional Value Nodes
Theorem 2.1: Let ๐‘š, ๐‘›โ‰ฅ1, then
(
0,1
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on
{
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
, ๐‘
๎ฏก
(
๐‘ง
)
}
; ยฑ๐œโˆ‰๐ด
๎ฏ 
(
๐‘ง
)
, ๐ต
๎ฏก
(๐‘ง) โŠ†
๐ด
๎ฏ 
(๐‘ง) is regular.
Proof: Here, we have total (๐‘š+ ๐‘›+2) interpolation
points.
We need to determine a polynomial ๐‘ƒ(๐‘ง) โˆˆ๐œ‹
๎ฏ ๎ฌพ๎ฏก๎ฌพ๎ฌต
with
๐‘ƒ
(
๐‘ฆ
๎ฏœ
)
=0 ; ๐‘ฆ
๎ฏœ
โˆˆ๐ด
๎ฏ 
(
๐‘ง
)
; ๐‘–=1,2,โ€ฆ,๐‘š,
๐‘ƒ
(
ยฑ๐œ
)
=0 ; ยฑ๐œโˆ‰๐ด
๎ฏ 
(
๐‘ง
)
,
๐‘ƒ
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ=0 ; ๐‘ง
๎ฏ
โˆˆ๐ต
๎ฏก
(๐‘ง) ; ๐‘—=1,2,โ€ฆ,๐‘›.
Let ๐‘ƒ
(
๐‘ง
)
=
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
๐‘„
(
๐‘ง
)
; where ๐‘„
(
๐‘ง
)
โˆˆ
๐œ‹
๎ฏก๎ฌฟ๎ฌต
.
Thus ๐‘ƒ
(
๐‘ง
)
โˆˆ๐œ‹
๎ฏ ๎ฌพ๎ฏก๎ฌพ๎ฌต
.
The posed problem will be regular, if ๐‘ƒ(๐‘ง) โ‰ก0.
Since ๐‘ƒ
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ=0, we get
๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๎ตซ๐‘ง
๎ฏ
๎ตฏ๐‘„
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ+ ๐‘„๎ตซ๐‘ง
๎ฏ
๎ตฏ๎ตฃ๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’
๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ+2๐‘ง
๎ฏ
๐‘Ž
๎ฏ 
๎ตซ๐‘ง
๎ฏ
๎ตฏ๎ตง=0.
As ๐‘ง
๎ฏ
โˆˆ๐ต
๎ฏก
(๐‘ง) โŠ†๐ด
๎ฏ 
(๐‘ง), we have
๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ๐‘„๎ตซ๐‘ง
๎ฏ
๎ตฏ=0.
Since ยฑ๐œโˆ‰๐ด
๎ฏ 
(
๐‘ง
)
and ๐‘Ž
๎ฏ 
(๐‘ง) has simple zeros, the
polynomial and its derivative cannot vanish
simultaneously at the same point, we have
๐‘„๎ตซ๐‘ง
๎ฏ
๎ตฏ=0.
Since ๐‘ง
๎ฏ
has ๐‘› values, we get
๐‘„
(
๐‘ง
)
= ๐ถ๐‘ž
๎ฏก
(
๐‘ง
)
(
2.1
)
According to our assumption ๐‘„(๐‘ง) โˆˆ๐œ‹
๎ฏก๎ฌฟ๎ฌต
and
therefore on account of equation (2.1), we get
๐‘„
(
๐‘ง
)
โ‰ก0.
Corollary 2.1: Let ๐‘š, ๐‘›โ‰ฅ1, then
(
0, 1
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on
{
(
๐‘ง
๎ฌถ
โˆ’1
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
, ๐‘
๎ฏก
(
๐‘ง
)
}
; ยฑ1 โˆ‰๐ด
๎ฏ 
(
๐‘ง
)
, ๐ต
๎ฏก
(๐‘ง) โŠ†
๐ด
๎ฏ 
(๐‘ง) is regular.
(
0,2
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ with two Additional Value Nodes
Theorem 2.2: Let ๐‘š, ๐‘›โ‰ฅ1, then
(
0, 2
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on
{
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
, ๐‘
๎ฏก
(
๐‘ง
)
}
; ยฑ๐œโˆ‰๐ด
๎ฏ 
(
๐‘ง
)
, ๐ต
๎ฏก
(๐‘ง) โŠ†
๐ด
๎ฏ 
(๐‘ง) is regular.
Proof: Here, we have total (๐‘š+ ๐‘›+2) interpolation
points.
We need to determine a polynomial ๐‘ƒ(๐‘ง) โˆˆ๐œ‹
๎ฏ ๎ฌพ๎ฏก๎ฌพ๎ฌต
with
๐‘ƒ
(
๐‘ฆ
๎ฏœ
)
=0 ; ๐‘ฆ
๎ฏœ
โˆˆ๐ด
๎ฏ 
(
๐‘ง
)
; ๐‘–= 1,2,โ€ฆ,๐‘š,
๐‘ƒ
(
ยฑ๐œ
)
=0 ; ยฑ๐œโˆ‰๐ด
๎ฏ 
(
๐‘ง
)
,
๐‘ƒ
๏‡ฑ๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ=0 ; ๐‘ง
๎ฏ
โˆˆ๐ต
๎ฏก
(
๐‘ง
)
; ๐‘—=1,2,โ€ฆ,๐‘›.
Let ๐‘ƒ
(
๐‘ง
)
=
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
๐‘„
(
๐‘ง
)
; where ๐‘„(๐‘ง) โˆˆ
๐œ‹
๎ฏก๎ฌฟ๎ฌต
.
Thus ๐‘ƒ
(
๐‘ง
)
โˆˆ๐œ‹
๎ฏ ๎ฌพ๎ฏก๎ฌพ๎ฌต
.
The posed problem will be regular, if ๐‘ƒ(๐‘ง) โ‰ก0.
Since ๐‘ƒ
๏‡ฑ๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ=0, we get
๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๎ตซ๐‘ง
๎ฏ
๎ตฏ๐‘„
๏‡ฑ๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ
+2๎ตฃ๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ
+2๐‘ง
๎ฏ
๐‘Ž
๎ฏ 
๎ตซ๐‘ง
๎ฏ
๎ตฏ๎ตง๐‘„
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ
+ ๎ตฃ๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๏‡ฑ๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ+4๐‘ง
๎ฏ
๐‘Ž
๎ฏ 
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ
+2๐‘Ž
๎ฏ 
๎ตซ๐‘ง
๎ฏ
๎ตฏ๎ตง๐‘„๎ตซ๐‘ง
๎ฏ
๎ตฏ=0.
As ๐‘ง
๎ฏ
โˆˆ๐ต
๎ฏก
(๐‘ง) โŠ†๐ด
๎ฏ 
(๐‘ง) and ๐‘Ž
๎ฏ 
(๐‘ง) has simple zero,
the polynomial and its derivative cannot vanish
simultaneously at the same point, we have
Pรกl Type Interpolation Problems with Additional Value Nodes
183
2๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ๐‘„
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ
+ ๎ต›๎ตซ๐‘ง
๎ฏ
๎ฌถ
โˆ’๐œ
๎ฌถ
๎ตฏ๐‘Ž
๎ฏ 
๏‡ฑ๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ
+4๐‘ง
๎ฏ
๐‘Ž
๎ฏ 
๏‡ฑ
๎ตซ๐‘ง
๎ฏ
๎ตฏ๎ตŸ๐‘„๎ตซ๐‘ง
๎ฏ
๎ตฏ=0.
Since ๐‘„(๐‘ง) โˆˆ๐œ‹
๎ฏก๎ฌฟ๎ฌต
and ๐‘ง
๎ฏ
has ๐‘› values, the
differential equation is given by
2
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐‘Ž
๎ฏ 
๏‡ฑ
(
๐‘ง
)
๐‘„
๏‡ฑ
(
๐‘ง
)
+
{
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐‘Ž
๎ฏ 
๏‡ฑ๏‡ฑ
(
๐‘ง
)
+
4๐‘ง๐‘Ž
๎ฏ 
๏‡ฑ
(
๐‘ง
)
}
๐‘„
(
๐‘ง
)
= ๐ถ
๎ฌต
๐‘
๎ฏก
(๐‘ง),
๐‘„
๏‡ฑ
(
๐‘ง
)
+ ๏‰Š
1
2
๐‘Ž
๎ฏ 
๏‡ฑ๏‡ฑ
(
๐‘ง
)
๐‘Ž
๎ฏ 
๏‡ฑ
(
๐‘ง
)
+
2๐‘ง
(๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๏‰‹๐‘„
(
๐‘ง
)
(
2.2
)
= ๐ถ
๐‘
๎ฏก
(
๐‘ง
)
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐‘Ž
๎ฏ 
๏‡ฑ
(
๐‘ง
)
,
for some constant ๐ถ=
๎ฎผ
๎ฐญ
๎ฌถ
.
Integrating factor of differential equation (2.2) is
given by
๐œ‘
(
๐‘ง
)
= ๐‘’๐‘ฅ๐‘
๎—ฌ
๏‰„
1
2
๐‘Ž
๐‘š
โ€ฒโ€ฒ
(
๐‘ง
)
๐‘Ž
๐‘š
โ€ฒ
(
๐‘ง
)
+
2๐‘ง
(๐‘ง
2
โˆ’๐œ
2
)
๏‰…
๐‘‘๐‘ง,
๐œ‘
(
๐‘ง
)
=
(
๐‘ง
2
โˆ’๐œ
2
){
๐‘Ž
๐‘š
โ€ฒ
(
๐‘ง
)}
1
2
.
Set
๐œ‚
(
๐‘ง
)
=
{
๐‘Ž
๐‘š
โ€ฒ
(
๐‘ง
)}
1
2
.
Solution of differential equation (2.2) is given by
๐œ‘
(
๐‘ง
)
๐‘„
(
๐‘ง
)
= ๐ถ
๎—ฌ
๐œ‘
(
๐‘ก
)
๐‘
๐‘›
(
๐‘ก
)
๎ตซ
๐‘ก
2
โˆ’๐œ
2
๎ตฏ๐‘Ž
๐‘š
โ€ฒ
(
๐‘ก
)
๐‘‘๐‘ก ,
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐œ‚
(
๐‘ง
)
๐‘„
(
๐‘ง
)
=
๐ถ
๎—ฌ
๎ตซ
๎ฏง
๎ฐฎ
๎ฌฟ๎ฐ
๎ฐฎ
๎ตฏ
๎ฐŽ
(
๎ฏง
)
๎ฏ•
๎ณ™
(
๎ฏง
)
(
๎ฏง
๎ฐฎ
๎ฌฟ๎ฐ
๎ฐฎ
)
๎ฏ”
๎ณ˜
๏‡ฒ
(
๎ฏง
)
๐‘‘๐‘ก ,
(
๐‘ง
๎ฌถ
โˆ’๐œ
๎ฌถ
)
๐œ‚
(
๐‘ง
)
๐‘„
(
๐‘ง
)
= ๐ถ
๎—ฌ
๎ฐŽ
(
๎ฏง
)
๎ฏ•
๎ณ™
(
๎ฏง
)
๎ฏ”
๎ณ˜
๏‡ฒ
(
๎ฏง
)
๐‘‘๐‘ก,
๐ถ
๎—ฌ
๎ฐŽ
(
๎ฏง
)
๎ฏ•
๎ณ™
(
๎ฏง
)
๎ฏ”
๎ณ˜
๏‡ฒ
(
๎ฏง
)
๐‘‘๐‘ก =0โ‡’๐ถ=0.
Hence,
๐‘„
(
๐‘ง
)
โ‰ก0.
Corollary 2.2: Let ๐‘š, ๐‘›โ‰ฅ1, then
(
0, 2
)
โˆ’๐‘ƒ๐‘‡๐ผ๐‘ƒ on
{
(
๐‘ง
๎ฌถ
โˆ’1
)
๐‘Ž
๎ฏ 
(
๐‘ง
)
, ๐‘
๎ฏก
(
๐‘ง
)
}
; ยฑ1 โˆ‰๐ด
๎ฏ 
(
๐‘ง
)
, ๐ต
๎ฏก
(๐‘ง) โŠ†
๐ด
๎ฏ 
(๐‘ง) is regular.
REFERENCES
Pรกl L.G., (1975), A new modification of the Hermite-Fejer
interpolation, Anal. Math., 1, 197-205.
De Bruin M.G., and Sharma A (2003), Lacunary Pรกl-type
interpolation and over-convergence, Comput. Methods
and Function Theory, 3, 305-323.
De Bruin M.G. (2005), (0, m) Pรกl-type interpolation:
interchanging value-nodes and derivative-nodes, J.
Comput. and Appl. Math., 179, 175โ€“184.
De Bruin M.G., and Dikshit H. P. (2005), Pรกl-type Birkhoff
interpolation on non-uniformly distributed points,
Numerical Algorithm, 40, 1-16.
Dikshit H.P., Pรกl-type interpolation on non-uniformly
distributed nodes on the unit circle, J. Comput. and
Appl. Math., 155 (2003), 253โ€“261.
De Bruin M.G.(2005), (0, m) Pรกl-type interpolation on the
Mรถbius transform of roots of Unity, J. Comput. and
Appl. Math., 178 (2005), 147โ€“153.
Mandloi A. and Pathak A. K. (2008), (0, 2) Pรกl-type
interpolation on a circle in the complex plane involving
Mรถbius transform, Numerical Algorithm, 47, 181-190.
Modi G., Pathak A. K. and Mandloi A. (2012), Some cases
of Pรกl-type Birkhoff interpolation on zeros of
polynomials with complex coefficients, Rocky
Mountain J., 42, 711-727.
Pathak A. K. and Tiwari P. (2019), Revisiting some Pรกl
type Birkhoff interpolation problems, J. of Indian
Mathematical Society, 86 (1-2), 118-125.
Pathak A. K. and Tiwari P. (2019), A new class of Pรกl type
interpolation, Applied Mathematic E-Notes, 19, 413-
418.
Pathak A. K. and Tiwari P. (2018), (0, 1) incomplete Pรกl
type Birkhoff Interpolation Problems, International
Journal of Adv. Research in Science & Engineering, 7,
34-41.
Pathak A. K. and Tiwari P. (2020), Incomplete Pรกl type
interpolation on non-uniformly distributed nodes,
Journal of Scientific Research, 64 (2), 212-215.
AI4IoT 2023 - First International Conference on Arti๏ฌcial Intelligence for Internet of things (AI4IOT): Accelerating Innovation in Industry
and Consumer Electronics
184