Intelligence Research (Vol. 13, Issue 1, pp. 1–22).
https://doi.org/10.4018/ijsir.302609
Bloch, E., Rotem, T., Cohen, J., Singer, P., & Aperstein, Y.
(2019). Machine Learning Models for Analysis of Vital
Signs Dynamics: A Case for Sepsis Onset Prediction.
Journal of Healthcare Engineering, 2019.
https://doi.org/10.1155/2019/5930379
Chami, S., & Tavakolian, K. (2019). Comparative Study of
Light-GBM and LSTM for Early Prediction of Sepsis
From Clinical Data. In 2019 Computing in Cardiology
Conference (CinC).
https://doi.org/10.22489/cinc.2019. 367
Deepak., John Justin Thangaraj, S., & Rajesh Khanna, M.
(2020, October 7). An improved early detection method
of autism spectrum anarchy using euclidean method.
2020 Fourth International Conference on I-SMAC (IoT
in Social, Mobile, Analytics and Cloud) (I-SMAC).
2020 Fourth International Conference on I-SMAC (IoT
in Social, Mobile, Analytics and Cloud) (I-SMAC),
Palladam, India. https://doi.org/10.1109/i-smac49090.
2020.9243361
Elith, J., Leathwick, J. R., & Hastie, T. (2008). A working
guide to boosted regression trees. The Journal of
Animal Ecology, 77(4), 802–813.
G. Ramkumar, R. Thandaiah Prabu, Ngangbam Phalguni
Singh, U. Maheswaran, Experimental analysis of brain
tumor detection system using Machine learning
approach, Materials Today: Proceedings, 2021, ISSN
2214-7853,
https://doi.org/10.1016/j.matpr.2021.01.246.
Hao, L., & Huang, G. (2023). An improved AdaBoost
algorithm for identification of lung cancer based on
electronic nose. Heliyon, 9(3), e13633.
Hecht-Nielsen, R. (2020). LPG-model: A novel model for
throughput prediction in stream processing, using a
light gradient boosting machine, incremental principal
component analysis, and deep gated recurrent unit
network. Information Sciences, 535, 107–129.
Hussain, M. M., Mahammad Hussain, M., & Karthick, V.
(2022). Efficient Search in Cloud Storage with Reduced
Computational Cost using Token Generation Method
over Crypto Hash Algorithm. In 2022 3rd International
Conference on Smart Electronics and Communication
(ICOSEC). https://doi.org/10.1109/icosec54921.2022.
9952137
Kakaraparthi, A., & Karthick, V. (2022). A Secure and
Cost-Effective Platform for Employee Management
System Using Lightweight Standalone Framework
Over Diffie Hellman’s Key Exchange Algorithm. In
ECS Transactions (Vol. 107, Issue 1, pp. 13663–
13674). https://doi.org/10.1149/10701.13663ecst
Liu, R., Greenstein, J. L., Granite, S. J., Fackler, J. C.,
Bembea, M. M., Sarma, S. V., & Winslow, R. L.
(2019). Data-driven discovery of a novel sepsis pre-
shock state predicts impending septic shock in the ICU.
Scientific Reports, 9(1), 1–9.
Neelagandan, R. (2012). High-Performance Face
Detection Using McT and Adaboost Algorithm. LAP
Lambert Academic Publishing.
Nesaragi, N., & Patidar, S. (2021). An Explainable Machine
Learning Model for Early Prediction of Sepsis Using
ICU Data. In Infections and Sepsis Development.
https://doi.org/10.5772/intechopen.98957
Peng, L., Peng, C., Yang, F., Wang, J., Zuo, W., Cheng, C.,
Mao, Z., Jin, Z., & Li, W. (2022). Machine learning
approach for the prediction of 30-day mortality in
patients with sepsis-associated encephalopathy. BMC
Medical Research Methodology, 22(1), 183.
Peng, X., Ding, Y., Wihl, D., Gottesman, O., Komorowski,
M., Lehman, L.-W. H., Ross, A., Faisal, A., & Doshi-
Velez, F. (2018). Improving Sepsis Treatment
Strategies by Combining Deep and Kernel-Based
Reinforcement Learning. AMIA ... Annual Symposium
Proceedings / AMIA Symposium. AMIA Symposium,
2018, 887–896.
Pravda, J. (2021). Sepsis: Evidence-based pathogenesis and
treatment. Pediatric Critical Care Medicine: A Journal
of the Society of Critical Care Medicine and the World
Federation of Pediatric Intensive and Critical Care
Societies, 10(4), 66.
Reyna, M., Josef, C., Jeter, R., Shashikumar, S., Moody, B.,
Brandon Westover, M., Sharma, A., Nemati, S., &
Clifford, G. D. (2019). Early Prediction of Sepsis from
Clinical Data: The PhysioNet/Computing in
Cardiology Challenge 2019 [Data set].
https://doi.org/10.13026/ v64v-d857
Sivakumar, V. L., Nallanathel, M., Ramalakshmi, M., &
Golla, V. (2022). Optimal route selection for the
transmission of natural gas through pipelines in
Tiruchengode Taluk using GIS–a preliminary study.
Materials Today: Proceedings, 50, 576-581.
Shrestha, U., Alsadoon, A., Prasad, P. W. C., Al Aloussi,
S., & Alsadoon, O. H. (2021). Supervised machine
learning for early predicting the sepsis patient: modified
mean imputation and modified chi-square feature
selection. Multimedia Tools and Applications, 80(13),
20477–20500.
Tarif, A. M., Raju, S. M., Al Amin Ashik, M., Islam, M. S.,
& Tahera, T. (2018). Self-Driving Car Simulation using
Adaboost-CNN Algorithm. GRIN Verlag.
Taylor, R. A., Pare, J. R., Venkatesh, A. K., Mowafi, H.,
Melnick, E. R., Fleischman, W., & Hall, M. K. (2016).
Prediction of In-hospital Mortality in Emergency
Department Patients With Sepsis: A Local Big Data-
Driven, Machine Learning Approach. Academic
Emergency Medicine: Official Journal of the Society
for Academic Emergency Medicine, 23(3), 269–278.
Wong, H. R., Cvijanovich, N. Z., Anas, N., Allen, G. L.,
Thomas, N. J., Bigham, M. T., Weiss, S. L., Fitzgerald,
J., Checchia, P. A., Meyer, K., Shanley, T. P., Quasney,
M., Hall, M., Gedeit, R., Freishtat, R. J., Nowak, J.,
Shekhar, R. S., Gertz, S., Dawson, E., … Lindsell, C. J.
(2015). Developing a Clinically Feasible Personalized
Medicine Approach to Pediatric Septic Shock.
American Journal of Respiratory and Critical Care
Medicine. https://doi.org/10.1164/rccm.201410-
1864OC
AI4IoT 2023 - First International Conference on Artificial Intelligence for Internet of things (AI4IOT): Accelerating Innovation in Industry