ability to generate stable, energy-efficient, and versa-
tile gaits. By combining reinforcement learning and
limb contact sequencing, we have demonstrated the
applicability of legged robots in diverse scenarios.
The analysis of energy efficiency and stability further
reinforces the significance of this approach and its po-
tential for practical implementation. Future research
may focus on optimizing gait patterns, incorporating
dynamic environments, and considering robustness to
varying terrains, thereby expanding the capabilities
and applications of legged robots.
REFERENCES
ANYbotics (2023). ANYmal - Autonomous Legged Robot
GitHub. https://github.com/ANYbotics.
Bagnell, J. and Schneider, J. (2001). Autonomous he-
licopter control using reinforcement learning pol-
icy search methods. International Conference on
Robotics and Automation.
Bengio, Y., Louradour, J., Collobert, R., and Weston, J.
(2009). Curriculum learning. In Proceedings of the
26th Annual International Conference on Machine
Learning, ICML ’09, page 41–48, New York, NY,
USA. Association for Computing Machinery.
Bertram, J. E. and Gutmann, A. (2009). Motions of the run-
ning horse and cheetah revisited: Fundamental me-
chanics of the transverse and rotary gallop. Journal of
the Royal Society Interface, 6(35):549–559.
Blickhan, R. (1989). The spring-mass model for run-
ning and hopping. Journal of biomechanics, 22 11-
12:1217–27.
Clayton, H. (2004). The Dynamic Horse A Biomechanical
Guide to Equine Movement and Performance. Sport
Horse Publications.
Folkertsma, G. A., Groothuis, S. S., and Stramigioli, S.
(2018). Safety and guaranteed stability through em-
bedded energy-aware actuators. In 2018 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 2902–2908.
Godbole, V., Dahl, G. E., Gilmer, J., Shallue, C. J., and
Nado, Z. (2023). Deep learning tuning playbook. Ver-
sion 1.0.
He, J. and Gao, F. (2020). Mechanism, actuation, per-
ception, and control of highly dynamic multilegged
robots. Chinese Journal of Mechanical Engineering
(English Edition), 33.
Hornby, G. S., Fujita, M., Takamura, S., Yamamoto, T.,
and Hanagata, O. (1999). Autonomous evolution of
gaits with the sony quadruped robot. In Proceedings
of the 1st Annual Conference on Genetic and Evolu-
tionary Computation - Volume 2, GECCO’99, page
1297–1304, San Francisco, CA, USA. Morgan Kauf-
mann Publishers Inc.
Hutter, M., Gehring, C., Jud, D., Lauber, A., Belli-
coso, C. D., Tsounis, V., Hwangbo, J., Bodie, K.,
Fankhauser, P., Bloesch, M., Diethelm, R., Bachmann,
S., Melzer, A., and Hoepflinger, M. (2016). Anymal
- a highly mobile and dynamic quadrupedal robot. In
2016 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 38–44.
Hwangbo, J., Lee, J., Dosovitskiy, A., Bellicoso, D., Tsou-
nis, V., Koltun, V., and Hutter, M. (2019). Learning
agile and dynamic motor skills for legged robots. Sci-
ence Robotics, 4(26):eaau5872.
Hwangbo, J., Lee, J., and Hutter, M. (2018). Per-contact
iteration method for solving contact dynamics. IEEE
Robotics and Automation Letters, 3(2):895–902.
Kim, S. and Wensing, P. M. (2017). Design of Dynamic
Legged Robots. Foundations and Trends in Robotics,
5(2):117–190.
Kohl, N. and Stone, P. (2004). Policy gradient reinforce-
ment learning for fast quadrupedal locomotion. In
IEEE International Conference on Robotics and Au-
tomation, 2004. Proceedings. ICRA ’04. 2004, vol-
ume 3, pages 2619–2624 Vol.3.
Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V., and Hut-
ter, M. (2020). Learning quadrupedal locomotion over
challenging terrain. CoRR, abs/2010.11251.
Miki, T., Lee, J., Hwangbo, J., Wellhausen, L., Koltun, V.,
and Hutter, M. (2022). Learning robust perceptive lo-
comotion for quadrupedal robots in the wild. Science
Robotics, 7(62):eabk2822.
Ng, A., Kim, H. J., Jordan, M., and Sastry, S. (2003). Au-
tonomous helicopter flight via reinforcement learning.
Advances in Neural Information Processing Systems
17.
Schulman, J., Klimov, O., Wolski, F., Dhariwal, P., and
Radford, A. (2017a). Proximal Policy Optimization.
Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. (2017b). Proximal policy optimization al-
gorithms. CoRR, abs/1707.06347.
Zashchitin, R. and Dobriborsci, D. (2023). Gait-
Generation2023. https://github.com/thd-research/
code-2023-study-quadruped-gait. Accessed: 2023-
07-01.
Zashchitin, R. A., Borisov, I. I., Borisova, O. V., and Kolyu-
bin, S. A. (2020). Energy-efficiency in legged robots
locomotion: Open versus closed chains. In 2020 In-
ternational Conference Nonlinearity, Information and
Robotics (NIR), pages 1–6.
Zhang, R. and Vadakkepat, P. (2003). An evolution-
ary algorithm for trajectory based gait generation of
biped robot. Proceedings of the International Con-
ference on Computational Intelligence, Robotics and
Autonomous Systems.
A Study on the Energy Efficiency of Various Gaits for Quadruped Robots: Generation and Evaluation
319