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Abstract: Detecting the ego-vehicle state is a challenging problem in the context of autonomous vehicles. Perception-
based methods leverage information from on-board cameras and sensors to determine the surrounding traffic 
scene and vehicle state. Monocular based approaches are becoming more popular for driver assistance, and 
accurate vehicle speed prediction plays an important role for improving road safety. This research paper 
presents an implementation of a Convolutional Neural Network (CNN) model for vehicle velocity prediction 
using sequential image input, as well as an extended model that also features sensorial data as input. The CNN 
model is trained on a dataset featuring sets of 20 sequential images, captured from a moving car in a road 
traffic scene. The aim of the model is to predict the current vehicle speed based on the information encoded 
in the previous 20 frames. The model architecture consists of convolutional layers followed by fully connected 
layers, having a linear output layer for the ego-vehicle velocity prediction. We evaluate our proposed models 
and compare them using existing published work that features Recurrent Neural Networks (RNNs). We also 
examine the prediction of the brake pedal pressure required while driving. 

1 INTRODUCTION 

The field of autonomous driving has become a 
thriving area of research for scientists and leading 
manufacturers such as Tesla, Waymo, and Baidu. 
This increased interest is driven by the remarkable 
progress made in computer vision, particularly in 
deep learning. These recent advancements have 
paved the way for significant breakthroughs for 
autonomous driving technologies. 

Developing perception-based policies to facilitate 
complex autonomous behaviours, such as driving, 
remains an ongoing challenge in the fields of 
computer vision and machine learning. The recent 
advancements in deep learning techniques for visual 
perception tasks have sparked considerable interest in 
exploring their effectiveness for learning driver 
intentions and actions to provide better road traffic 
safety. 

Accurate vehicle speed prediction plays a crucial 
role for various applications in autonomous driving, 
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traffic monitoring, and driver assistance systems. The 
main factor for road accidents is still represented by 
the human error, according to the National Highway 
Traffic Safety Administration (NHTSA). They also 
claim that speeding represents one of the main 
problems for road accidents with fatalities (NHTSA, 
2023). Determining the vehicle speed from on-board 
images can be used for video forensics, especially 
when using uncalibrated video data. Accurate 
prediction models enables us to gain a deeper 
understanding of the underlying factors and 
motivations driving the decision-making process of 
drivers. 

This research focuses on developing a CNN-
based model that leverages sequential image input to 
predict the current vehicle velocity (speed) and the 
need for braking during driving. By analysing a 
sequence of images, captured from a moving car in a 
road traffic scene, the model aims to estimate the 
velocity based on the temporal information encoded 
in the previous frames. We use only the front image 
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input from the ego-vehicle, as it provides the most 
accurate representation of the visual input that the 
driver also has of the scene. We then extend our 
model to feature sensorial input (velocity data 
expressed in km/h) as well. We compare our approach 
with a method based on recurrent neural networks 
(RNNs), more specifically Long Short-Term 
Memories (LSTMs) that features multiple inputs in 
order to produce a prediction. We have also tested a 
model to estimate the brake pedal pressure needed in 
road traffic scenarios and the results are promising.   

2 RELATED WORK 

We analyse the related work that features visual input 
(images captured from the scene) and sensorial input 
or measurements for self-driving vehicles related 
tasks.  

The authors of (Xue, 2018), propose an approach 
that combines a Convolutional Neural Network 
(CNN) and Long Short Term Memory (Hochreiter, 
1997) to predict the future positions of pedestrians in 
video sequences captured by static cameras. The 
method utilizes an occupancy grid, along with image 
inputs and observed trajectory (x, y pedestrian 
coordinates), to predict the forthcoming pedestrian 
position data in the image frame or scene. 

The work (Xu, 2017), proposes an approach that 
leverages a Fully Convolutional Network (FCN) to 
extract road scene image data and combines it with a 
LSTM to encode the current sensorial data of the ego-
vehicle, including speed and angular velocity. The 
objective is to predict the next action that the ego-
vehicle should undertake. The network's output 
represents the recommended current action, which 
can be one of the following: go straight, stop, turn left, 
or turn right. 

The work of (Codevilla, 2018) also presents an 
approach to predict the appropriate action for the 
driver using both scene image and sensorial data. The 
network takes as input the image from the road traffic 
scene, along with measurement data such as ego-
vehicle speed, and command data including ego-
vehicle steering angle and acceleration. The neural 
network's objective is to predict the recommended 
action for the ego-vehicle, which can be one of the 
following: continue (follow the road), left (turn left at 
intersection), straight (go straight at intersection), or 
right (turn right at intersection). This paper makes use 
of CARLA (Dosovitskiy, 2017), an open-source 
urban driving simulator that can provide a realistic 
environment for training and evaluating autonomous 
driving related algorithms. 

In (Gu, 2020), the authors present an LSTM-based 
solution for predicting future driver behaviour. The 
approach incorporates a CNN to represent the image 
frames and a recurrent neural network (LSTM) to 
encode twelve features extracted from the frames, 
including ego-vehicle velocity on three axes, distance 
from the ego-vehicle to the front car (dx, dy), front 
car velocity (three axes), front car acceleration (three 
axes), and the number of existing front vehicles. The 
input video sequence consists of ten frames (ten 
images), and the model predicts the future values of 
ego-vehicle acceleration on three axes. The approach 
employs a pretrained ResNet (He, 2016) for feature 
extraction from the input frames. 

In (Ding, 2022), the authors focus on speed-
control forecasting for autonomous or self-driving 
vehicles. The approach utilizes positional data of 
objects in the scene, which are processed through a 
CNN and LSTM to extract the ego-vehicle speed. The 
network incorporates Mask R-CNN (He, 2017) with 
a pretrained ResNet-50 backbone to extract object 
information, including bounding box coordinates. 
The proposed method constructs object-related 
graphs based on object proximity, where graph edges 
connect pairs of objects in the scene. Subsequently, 
graph convolution is applied to extract local spatial 
relations. The results are then fed into an LSTM and 
a multi-layer perceptron to obtain the ego-vehicle 
speed control data. 

Most related work features imagery data from the 
scene, together with sensorial data that is then 
combined to extract current or future predictions, 
usually with recurrent neural networks (mostly using 
LSTM’s). Usually, these methods feature complex 
deep learning architectures that require a lot of 
training data, pre-processing this data, and also the 
additional sensorial data as input. These neural 
networks are difficult to implement on hardware 
systems with limited resources (with the aim of being 
integrated in the vehicle).  

In this paper, we propose making use of only 
imagery data in order to predict the current state of 
the vehicle (in this case the ego-vehicle velocity), 
based on previous “N” frames (image sequence). We 
choose N = 20 to represent the image input sequence. 
We then extend our initial solution to include the 
velocity as input along with the image data. Our work 
is similar to (Bojarski, 2016), where the authors make 
use of an end-to-end learning approach for a self-
driving car using artificial neural networks. The 
previous published paper explores using CNNs to 
learn driving behaviours directly from visual input 
and predicts the ego-vehicle steering angle from an 
image from the road traffic scene. We extend this to 
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make use of sensorial data as input using CNN only 
models. 

Our approach uses a publicly available large-scale 
video dataset that can be extended to also use 
different input data sources as presented in the results 
section. 

3 SOLUTION OVERVIEW 

We implement 2 CNN models to predict ego-vehicle 
speed. The first model features a sequence of images 
as input, whereas the second one features also the 
associated vehicle speed for each image as input into 
the network. We have also tested a Recurrent Neural 
Network based solution, that we implemented in 
order to compare our results. The third model features 
images and associated vehicle speed as input.  

3.1 Proposed CNN Model: Image Input 
(V1) 

The initial CNN model architecture proposed in this 
paper features several convolutional layers, followed 
by fully connected layers. This model is able to 
predict the current velocity, using only the extracted 
relevant features from the pixel data. An overview of 
the solution is presented in figure 1. 

 

Figure 1: The proposed CNN model (V1) to predict the 
current vehicle speed based on an input sequence of 20 past 
frames (front-view images of the road traffic scene). 

The model takes as input a sequence of 20 sequential 
images, each with a dimension of 300x300 pixels. 
The convolutional layers use different filter sizes and 
strides to extract spatial features from the images, 
progressively increasing the number of feature maps. 
Rectified Linear Unit (ReLU) activation functions are 
used to introduce non-linearity and enhance the 
model's ability to learn complex patterns. A Dropout 
layer is incorporated to mitigate overfitting. The 
output of the convolutional layers is flattened and fed 
into a stack of fully connected layers, which further 
capture higher-level representations of the input data. 
The final layer is a linear activation function that 
predicts the current vehicle speed. The model features 
a total of ~5.9 million trainable parameters, meaning 

that it is easily trainable and also portable on other 
hardware (such as Nvidia Jetson platform).  

3.2 Extended CNN Model: Image and 
Velocity Input (V2) 

The initially proposed model (V1) was trained with 
the dataset presented in the next section. Then, we 
freeze the convolutional layers and the flatten layer 
wights, and the next step is to extend the CNN to also 
feature a measurement input, in this case the past 20 
velocity values along with the 20 images.  

Therefore, the extended network (V2) has the 
following structure (figure 2). 

 

Figure 2: The extended CNN model (V2) that uses pairs of 
20 images and 20 velocity measurements as input to predict 
the current velocity. 

The flatten layer is then concatenated with the 
sensorial data input (reshaped to feature the same data 
ordering/dimensionality), followed by the same 4 
Dense layers as the initially proposed model. Finally, 
we retrained the extended CNN (V2) and evaluate it. 

3.3 Recurrent Neural Network Based 
Model (V3) 

Based on previous published work, we have 
implemented our own version of a CNN+LSTM 
model based on the work of (Xue, 2018). Our 
implementation features a sequence of 20 images of 
the scene, as well as 20 corresponding ego-vehicle 
speed data as input. An overview of this approach is 
depicted in figure 3. 

The layer architecture of this model is similar to 
the one published by the authors of (Xue, 2018). We 
change the input to use 20 images as input and predict 
one measurement. 
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Figure 3: An implementation of a CNN+LSTM network to 
predict the velocity data using pairs of images and 
velocities as input. 

3.4 Dataset 

We trained using the Honda Research Institute 
Driving Dataset - HDD (Ramanishka, 2018) that 
consists of 104 hours of driving data in road traffic 
scenes from the San Francisco area. The provided 
dataset introduces supplementary annotations that 
feature various driver behaviours observed in driving 
scenes, surpassing the limited focus on turn, go 
straight, and lane change present in existing datasets. 
Additionally, the dataset captures Controller Area 
Network (CAN) signals to depict driver behaviours in 
diverse scenarios, particularly interactions with other 
participants in traffic.  

The dataset features the following sensor types: 
camera, Lidar, GPS, IMU and CAN bus signals, in 
various scenarios such as: suburban, urban and 
highway. The imagery data is encoded as colour 
images with the size of 1280x720 pixels, captured at 
30 Hz. On the data we received, we actually found 
that some frames are missing and therefore not all 
sequences feature 30 fps. The dataset contains 137 
trips, out of which we selected 7 random trips to be 
excluded from the training process (to be used for 
evaluation). The remaining 130 trips are split into 
training and testing/validation sets (80/20% split). 

The 137 individual trips from the dataset feature 
various road traffic scenes, captured at different 
moments of the day and in various weather 
conditions. From these trips we have extracted 
sequences of N = 20 images, along with the provided 
ego-vehicle speed for each image, using a sliding 
window with an overlap of 5. We were able to obtain 
a total of over 14.000 continuous sequences of 20 
images and 20 velocity data pairs ([T-21:T-1]), as well 
the current velocity data (T0). 

3.5 Implementation 

The experimental setup features a desktop computer, 
equipped with an Intel i7 CPU and two Nvidia 1080 

Ti GPUs that have a total of 22 GB VRAM that are 
used during the training process of the neural 
network. The software development is based on 
TensorFlow and Keras (Chollet, 2015) for the neural 
network, and OpenCV and Matplotlib for 
visualisation and video generation of the results. 

4 EXPERIMENTAL RESULTS 

4.1 Training the CNNs 

All of the proposed CNN models for predicting 
vehicle velocity are trained using the Mean Squared 
Error (MSE) loss function and optimized using the 
Adam optimizer featuring an initial learning rate of 
0.001 that is decreased if the loss function doesn’t 
improve. The training process aims to minimize the 
difference between the predicted and ground truth 
vehicle speeds that are expressed in km/h.  

 

Figure 4: The loss function values over 50 epochs for V1. 

We make use of loss monitorization to early stop the 
model if the loss doesn’t improve after 10 epochs, 
therefore we got a fully trained model after 53 epochs. 
Each epoch takes around ~18 minutes to train, 
resulting in a total training time of ~16 hours using 
our hardware setup. The extended model (V2) 
features a similar number of trainable parameters 
(5.909 million versus 5.907 for the initial), and the 
training times are almost identical. The CNN+LSTM 
based model (V3) features a total of ~26 million 
parameters, and using the same dataset means that the 
total training time is mostly similar. 

4.2 Initial Evaluation and Optimization 

The accuracy for all of the proposed models is 
evaluated using standard regression performance 
metrics, including R-squared, Mean Absolute Error 
(MAE), Root Mean Squared Error (RMSE).  

We tried to determine the impact of selecting 
different regions of interest within an image on the 
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performance of a CNN-based regression model. The 
selected regions include the centre, left, and right 
portions of the input image, with the normal-sized 
input image serving as the baseline. Figure 5 
illustrates the selected regions of interest (ROIs). 

 

Figure 5: Selecting the regions of interest from the original 
input image. 

Table 1 represents the evaluation results from the 
initial proposed model (V1), compared with the 
results obtained from the regions of interest models. 
We first trained on a small subset of 25 trips out of 
the entire 137 trips available in the HDD dataset, to 
determine the best performing input image (Normal 
or ROI). Then, we retrained the network (V1) with 
the entire train set (130 trips) using the most optimal 
input image type. 

Table 1: Evaluation of the initial proposed CNN model 
(V1) for predicting the velocity (km/h). 

Model image 
input 

R-squared 
(km/h)

MAE 
(km/h) 

RMSE 
(km/h)

Normal 
(fully 

trained) 

0.825 4.334 6.085 

Normal  0.448 8.335 10.831
ROI Centre 0.333 8.672 11.91

ROI Left 0.335 9.011 11.888
ROI Right 0.243 9.302 12.689

The analysis revealed that the normal-sized input 
image (no ROI applied) provided the best overall 
performance in terms of R-squared, MAE, and 
RMSE. Moreover, the centre region demonstrated 
relatively better performance compared to the left and 
right regions, indicating that the model relied heavily 
on the central information for accurate predictions.  

Figure 6 contains the prediction versus ground 
truth of the ego-vehicle speed on a subset of frames 
from trip with the id “201703081617” from the HDD 
dataset.  

 

Figure 6: Ground truth and prediction visual representation 
on a trip from the validation set for model V1. 

Figure 7 represents some of our results on the 
evaluation test set, where the ground truth is 
displayed with blue, whereas the prediction is 
coloured red. 

 

Figure 7: Ground truth and prediction visual representation 
on a trip from the validation set for model V1. 

A video of the velocity prediction results, from the 
initial model (V1) using only images as input, is 
available here: https://vimeo.com/832355875. 

The results from the extended model (V2) can be 
seen here: https://vimeo.com/832353512, whereas 
the V3 model (CNN+LSTM) predictions video is 
here: https://vimeo.com/832438597. 

4.3 Evaluation of the Proposed Models 

We have compared our proposed models (V1 - initial 
and V2 - extended) with the CNN+LSTM based 
method (V3). The results are presented in table 2. 

Having the velocity as input and using it into a 
Recurrent Neural Network, combined with the 
extracted road scene data, means that the model is able 
to predict more accurately the current ego-vehicle 
velocity (speed). The downside is that existing 
published models (V3) feature more trainable 
parameters, therefore directly affecting negatively the 
prediction time (as can be seen in table 2). 
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Table 2: Comparison between CNN+LSTM and CNN 
(initial and extended model) for velocity prediction (km/h). 

CNN 
Model 

R-squared 
(km/h) 

MAE 
(km/h)

RMSE 
(km/h) 

Prediction 
time (ms) 

Model 
parameters

SS-LSTM 
based 

implement
ation (Xue, 

2018) - 
(V3) 

0.99 0.52 0.76 18.64 
~26 

million 

Proposed 
model 
(V1) 

0.82 4.33 6.08 3.1 
~5.9 

million 

Proposed 
extended 

model 
(V2) 

0.96 1.93 2.66 3.1 
~5.9 

million 

From our experiments, we have found that the 
LSTM-based implementation (V3), although 
produces more accurate evaluation results, is actually 
heavily dependent on the past velocity input data. 
This can be proven simply by using random vehicular 
speed inputs to the network, as can be seen in the 
below figure:  

 

Figure 8: Wrong ego-vehicle speed predictions (from the 
CNN+LSTM model) when the ego-vehicle data is 
corrupt/erroneous. 

If we provide a constant past ego-vehicle speed as 
input along with the images, the predicted output of 
the CNN+LSTM model (V3) is also constant:  

 

Figure 9: Wrong ego-vehicle speed predictions (from the 
CNN+LSTM model) when the ego-vehicle data is constant 
throughout the entire sequence/trip. 

Our initial model (V1), even though not so 
accurate on the standard evaluation metrics, is proven 

to be more robust because it is capable of correctly 
extracting the relevant features from the visual image 
sequence to predict the current speed: 

 

Figure 10: Prediction of ego-vehicle current speed from our 
proposed model (V1 - using only image sequence input). 

Furthermore, in order to compare our extended 
model (V2) with the same test scenario, we have 
simulated a sensor failure, meaning that we feed the 
CNN with “-1” values for the velocity as input into 
the model. Figure 11 illustrates the result of this test 
scenario.   

 
Figure 11: Prediction of the ego-vehicle speed from the 
extended model (V2 - using image and past velocity input) 
with sensor failure simulated (0km/h past velocity fed as 
input into the model). 

In order to validate the robustness of our solution, 
we have performed multiple tests with simulated 
sensor failure. The results are presented in table 3.  

Table 3: Velocity (km/h) prediction evaluation of V2 model 
using different simulated sensor failures. 

Sensor failure 
rate

R-squared 
(km/h) 

MAE 
(km/h) 

RMSE 
(km/h)

0% 0.966 1.93 2.66
10% 0.843 2.87 5.77
20% 0.770 3.51 6.98
30% 0.764 3.79 7.07
50% 0.765 4.24 7.06
80% 0.694 4.90 8.06
100% 0.796 4.67 6.57

The extended model (V2) is able to rely on pixel 
data in order to extract the relevant features to predict 
accurately the ego-vehicle velocity even in simulated 
velocity input failure (80% and 100% of the input 
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data is -1km/h). A video with the prediction results on 
the 80% fail rate can be seen here: 
https://vimeo.com/832352987. 

We have also tested our models on a different 
dataset (Nedevschi, 2004), with images and data 
acquired using a different hardware setup. The data is 
acquired using a stereo-camera setup from which we 
use only the images from the left camera. The 
sensorial data is acquired using the CAN Bus from 
the vehicle, from which we use the velocity.  

We have found that the image-based model (V1) 
is able to generalize and predict the ego-vehicle 
velocity accurately in most situations, especially 
when braking in intersections or decelerating during 
driving. Some of the results are presented in figure 12. 

 

Figure 12: Predicting velocity on a different dataset using 
only images as input (V1). 

We tested the extended model (V2) on the same 
dataset, and figure 13 presents examples of the 
prediction results. 

 
Figure 13: Prediction of the ego-vehicle speed from the 
extended model (V2 - using image and past velocity input) 
with sensor failure simulated (0km/h past velocity fed as 
input into the model). 

Given the fact that the new dataset uses a different 
hardware setup for the image acquisition process, we 
can reason that the image-based input only model 
(V1) is able to detect properly the velocity 
acceleration and deceleration when needed. This is 
effective in the situations where accidents can occur 
(intersections, pedestrian crossings, forward collision 
warning, etc.). When moving at a constant speed, the 
V1 model predicts an inaccurate speed due to 
difference in the frame rates from the training set and 

the new evaluation set (Nedevschi, 2004). The V2 
model, that also features velocity as input, is proven 
to be more robust, and the evaluation of both versions 
on the new dataset is presented in table 4. 

Table 4: Velocity (km/h) prediction evaluation of the 
proposed CNN models on the new dataset (Nedevschi, 
2004). 

CNN Model R-squared 
(km/h)

MAE 
(km/h) 

RMSE 
(km/h)

V1 -0.507 15.25 19.17
V2 0.871 4.04 5.59

4.4 Brake Pedal Sensor Evaluation  

We have also trained the image-only based CNN (V1) 
to predict the brake pedal pressure that needs to be 
applied, as it was available in the additional sensorial 
data from the dataset. Figure 14 represents some 
results we have obtained on a small evaluation set. 

 

Figure 14: Evaluation of the brake predictions versus 
ground truth from the dataset. 

The evaluation results are based on the brake 
pedal pressure sensor from the dataset, which is 
expressed in kPa, meaning that no brake pedal 
pressed will give low values (close to 0), whereas full 
brake pedal pressed will represent a larger value 
(usually 2-3000 kPa. Evaluating the brake pedal 
pressure gives the following results: a MAE of 
245.95, R-squared 0.52 and the RMSE is 422.15 on 
the V1 model that uses only images as input into the 
neural network. An example is presented in figure 15. 

We found that the brake pedal pressure prediction 
is robust even on different datasets than the ones that 
were used during training, as can be seen in figure 15. 
The figure shows a case when the model is able to 
predict correctly that the brake pedal needs to be 
pressed when the vehicle is stationary.  
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Figure 15: Visualisation of the brake predictions and the 
ground truth velocity from a different dataset. 

5 CONCLUSIONS  

The implementation of a CNN model for vehicle 
speed prediction using sequential image input 
demonstrates the potential of leveraging temporal 
information captured in sequential frames. The model 
architecture, effectively extracts relevant spatial 
features and captures high-level representations of the 
input data. The model is evaluated using several 
evaluation metrics, providing insights into its 
accuracy and reliability. We extend our model to 
provide sensorial data as input and we compare both 
models with existing published work that uses 
additional sensorial input. We found that our 
approaches are more robust compared to other 
methods that leverage additional data while using 
recurrent neural networks, if the additional input 
sensorial data is corrupt or erroneous. We have also 
tested and evaluated our image based model to predict 
brake pedal pressure given the same sequence of 
input images, and the results are promising even on 
un-seen data from different datasets. Further 
experiments can enhance the understanding of the 
model's capabilities and potentially lead to 
improvements in vehicle speed prediction for real-
world applications, such as video forensics. 
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