Gao, H., Sun, L., and Wang, J.-X. (2021). Phy-
GeoNet: Physics-informed geometry-adaptive convo-
lutional neural networks for solving parameterized
steady-state PDEs on irregular domain. Journal of
Computational Physics, 428:110079.
Gmeiner, M., Dirnberger, J., Fenz, W., Gollwitzer, M.,
Wurm, G., Trenkler, J., and Gruber, A. (2018). Virtual
cerebral aneurysm clipping with real-time haptic force
feedback in neurosurgical education. World Neuro-
surgery, 112:e313–e323.
Guo, X., Li, W., and Iorio, F. (2016). Convolutional neural
networks for steady flow approximation. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
KDD ’16, pages 481–490.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. 2016 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778.
Hennigh, O., Narasimhan, S., Nabian, M. A., Subrama-
niam, A., Tangsali, K., Fang, Z., Rietmann, M.,
Byeon, W., and Choudhry, S. (2021). NVIDIA Sim-
Net™: an AI-accelerated multi-physics simulation
framework. In Computational Science – ICCS 2021:
21st International Conference, Krakow, Poland, Pro-
ceedings, Part V, page 447–461. Springer-Verlag.
Jagtap, A. D., Kawaguchi, K., and Karniadakis, G. E.
(2020). Adaptive activation functions accelerate con-
vergence in deep and physics-informed neural net-
works. Journal of Computational Physics, 404.
Jiang, C. M., Esmaeilzadeh, S., Azizzadenesheli, K.,
Kashinath, K., Mustafa, M., Tchelepi, H. A., Marcus,
P., Prabhat, M., and Anandkumar, A. (2020). MESH-
FREEFLOWNET: A physics-constrained deep con-
tinuous space-time super-resolution framework. In
SC20: International Conference for High Perfor-
mance Computing, Networking, Storage and Analysis,
pages 1–15.
Jin, X., Cai, S., Li, H., and Karniadakis, G. E. (2021).
NSFnets (navier-stokes flow nets): Physics-informed
neural networks for the incompressible navier-stokes
equations. Journal of Computational Physics,
426:109951.
Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. (2021). Physics-informed
machine learning. Nature Reviews Physics, 3(6):422–
440.
Lakens, D. (2013). Calculating and reporting effect sizes
to facilitate cumulative science: a practical primer for
t-tests and ANOVAs. Frontiers in Psychology, 4.
Li, J., Yue, J., Zhang, W., and Duan, W. (2022). The deep
learning galerkin method for the general stokes equa-
tions. Journal of Scientific Computing, 93(1):5.
Ma, H., Zhang, Y., Thuerey, N., null, X. H., and Haidn, O. J.
(2022). Physics-driven learning of the steady navier-
stokes equations using deep convolutional neural net-
works. Communications in Computational Physics,
32(3):715–736.
Markidis, S. (2021). The old and the new: Can
physics-informed deep-learning replace traditional
linear solvers? Frontiers in Big Data, 4.
Matsumoto, M. (2021). Application of deep galerkin
method to solve compressible navier-stokes equations.
Transactions of the Japan Society for Aeronautical
and Space Sciences, 64:348–357.
Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. (2020). NeRF: Repre-
senting scenes as neural radiance fields for view syn-
thesis. In Computer Vision – ECCV 2020, Lecture
Notes in Computer Science, pages 405–421. Springer
International Publishing.
Moser, P., Fenz, W., Thumfart, S., Ganitzer, I., and Giret-
zlehner, M. (2023). Modeling of 3d blood flows
with physics-informed neural networks: Comparison
of network architectures. Fluids, 8(2):46. Number: 2
Publisher: MDPI.
NVIDIA (2022). NVIDIA Modulus Framework.
https://developer.nvidia.com/modulus. accessed
12/2022.
Oldenburg, J., Borowski, F.,
¨
Oner, A., Schmitz, K.-P., and
Stiehm, M. (2022). Geometry aware physics informed
neural network surrogate for solving navier–stokes
equation (GAPINN). Advanced Modeling and Sim-
ulation in Engineering Sciences, 9(1):8.
Rahaman, N., Baratin, A., Arpit, D., Draxler, F., Lin,
M., Hamprecht, F. A., Bengio, Y., and Courville, A.
(2019). On the spectral bias of neural networks. In
Proceedings of the 36th International Conference on
Machine Learning, volume 97:5301-5310.
Raissi, M., Perdikaris, P., and Karniadakis, G. E. (2019).
Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse prob-
lems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686–707.
Raissi, M., Yazdani, A., and Karniadakis, G. E. (2020).
Hidden fluid mechanics: Learning velocity and
pressure fields from flow visualizations. Science,
367(6481):1026–1030.
Rao, C., Sun, H., and Liu, Y. (2020). Physics-informed deep
learning for incompressible laminar flows. Theoreti-
cal and Applied Mechanics Letters, 10(3):207–212.
Sirignano, J. and Spiliopoulos, K. (2018). DGM: A
deep learning algorithm for solving partial differen-
tial equations. Journal of Computational Physics,
375:1339–1364.
Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Bar-
ron, J., and Ng, R. (2020). Fourier features let net-
works learn high frequency functions in low dimen-
sional domains. In Advances in Neural Information
Processing Systems, volume 33:7537-7547. Curran
Associates, Inc.
Wang, S., Teng, Y., and Perdikaris, P. (2021). Under-
standing and mitigating gradient flow pathologies in
physics-informed neural networks. SIAM Journal on
Scientific Computing, 43(5):A3055–A3081.
Wu, B., Hennigh, O., Kautz, J., Choudhry, S., and Byeon,
W. (2022). Physics informed RNN-DCT networks
for time-dependent partial differential equations. In
Computational Science – ICCS 2022, Lecture Notes
in Computer Science, pages 372–379. Springer Inter-
national Publishing.
SIMULTECH 2023 - 13th International Conference on Simulation and Modeling Methodologies, Technologies and Applications
250