Banerjee, S., Odelu, V., Das, A. K., Chattopadhyay, S., and
Park, Y. (2020). An efficient, anonymous and robust
authentication scheme for smart home environments.
Sensors, 20(4):1215.
Chatterjee, S., Roy, S., Das, A. K., Chattopadhyay, S.,
Kumar, N., and Vasilakos, A. V. (2018). Secure
biometric-based authentication scheme using cheby-
shev chaotic map for multi-server environment. IEEE
Trans Dependable Secure Comput, 15(5):824–839.
Das, A. K., Wazid, M., Kumar, N., Khan, M. K., Choo,
K.-K. R., and Park, Y. (2018). Design of secure and
lightweight authentication protocol for wearable de-
vices environment. IEEE Journal of Biomedical and
Health Informatics, 22(4):1310–1322.
Fakroon, M., Gebali, F., and Mamun, M. (2021). Multifac-
tor authentication scheme using physically unclonable
functions. Internet of Things, 13:100343.
Hu, V. C., Ferraiolo, D., Kuhn, R., Friedman, A. R.,
Lang, A. J., Cogdell, M. M., Schnitzer, A., Sandlin,
K., Miller, R., Scarfone, K., et al. (2013). Guide
to attribute based access control (ABAC) definition
and considerations (draft). NIST special publication,
800(162):1–54.
Islam, S. (2014). Provably secure dynamic identity-based
three-factor password authentication scheme using ex-
tended chaotic maps. Nonlinear Dyn., 78(3):2261–
2276.
Jiang, Q., Qian, Y., Ma, J., Ma, X., Cheng, Q., and Wei, F.
(2019). User centric three-factor authentication proto-
col for cloud-assisted wearable devices. Int. J. Com-
mun. Syst., 32(6):e3900.
Jiang, Q., Wei, F., Fu, S., Ma, J., Li, G., and Ale-
laiwi, A. (2016). Robust extended chaotic maps-based
three-factor authentication scheme preserving biomet-
ric template privacy. Nonlinear Dyn., 83(4):2085–
2101.
Jiang, Q., Zhang, N., Ni, J., Ma, J., Ma, X., and Choo,
K.-K. R. (2020). Unified biometric privacy preserv-
ing three-factor authentication and key agreement for
cloud-assisted autonomous vehicles. IEEE Trans. on
Vehicular Technology, 69(9):9390–9401.
Juels, A. and Ristenpart, T. (2014). Honey encryption: Se-
curity beyond the brute-force bound. In Advances
in Cryptology–EUROCRYPT 2014: 33rd Annual Intl.
Conf. on the Theory and Applications of Crypto-
graphic Techniques, Copenhagen, Denmark, May 11-
15, 2014. Proceedings 33, pages 293–310. Springer.
Karati, A., Fan, C.-I., and Zhuang, E.-S. (2021). Reliable
data sharing by certificateless encryption supporting
keyword search against vulnerable KGC in industrial
internet of things. IEEE Trans. on Industrial Infor-
matics, 18(6):3661–3669.
Kirkpatrick, M. S., Kerr, S., and Bertino, E. (2014). System
on chip and method for cryptography using a physi-
cally unclonable function. US Patent 8,750,502.
Kwon, D., Park, Y., and Park, Y. (2021). Provably secure
three- factor-based mutual authentication scheme with
PUF for wireless medical sensor networks. Sensors,
21(18):6039.
Masud, M., Gaba, G. S., Choudhary, K., Hossain,
M. S., Alhamid, M. F., and Muhammad, G. (2021).
Lightweight and anonymity-preserving user authenti-
cation scheme for IoT-based healthcare. IEEE Inter-
net of Things Journal, 9(4):2649–2656.
Qiu, S., Wang, D., Xu, G., and Kumari, S. (2022). Prac-
tical and provably secure three-factor authentication
protocol based on extended chaotic-maps for mobile
lightweight devices. IEEE Trans Dependable Secure
Comput, 19(2):1338–1351.
Roy, S., Chatterjee, S., Das, A. K., Chattopadhyay, S.,
Kumari, S., and Jo, M. (2018). Chaotic map-based
anonymous user authentication scheme with user bio-
metrics and fuzzy extractor for crowdsourcing internet
of things. IEEE IOT Journal, 5(4):2884–2895.
Roy, S., Das, D., Mondal, A., Mahalat, M. H., Roy, S., and
Sen, B. (2021). PUF based lightweight authentica-
tion and key exchange protocol for IoT. In SECRYPT,
pages 698–703.
R
¨
uhrmair, U., Sehnke, F., S
¨
olter, J., Dror, G., Devadas,
S., and Schmidhuber, J. (2010). Modeling attacks on
physical unclonable functions. In Proceedings of the
17th ACM conference on Computer and Communica-
tions Security (ACM-CCS), pages 237–249.
Ryu, J., Kang, D., and Won, D. (2022). Improved secure
and efficient chebyshev chaotic map-based user au-
thentication scheme. IEEE Access, 10:15891–15910.
Saqib, M., Jasra, B., and Moon, A. H. (2022). A lightweight
three factor authentication framework for iot based
critical applications. Journal of King Saud University-
Computer and Info. Sciences, 34(9):6925–6937.
Trivedi, H. S. and Patel, S. J. (2021). Privacy preserving
scalable authentication protocol with partially trusted
third party for distributed internet-of-things. In SE-
CRYPT, pages 812–818.
Wang, F., Xu, G., Xu, G., Wang, Y., and Peng, J. (2020). A
robust IoT-based three-factor authentication scheme
for cloud computing resistant to session key exposure.
Wirel Commun Mob Comput, 2020.
Wang, W., Han, Z., Alazab, M., Gadekallu, T. R., Zhou,
X., and Su, C. (2022). Ultra super fast authentication
protocol for electric vehicle charging using extended
chaotic maps. IEEE Trans. on Industry Applications,
58(5):5616–5623.
Wang, Z., Deng, D., Hou, S., Guo, Y., and Li, S. (2023). De-
sign of three-factor secure and efficient authentication
and key-sharing protocol for IoT devices. Computer
Communications.
Yu, Y., Taylor, O., Li, R., and Sunagawa, B. (2021).
An extended chaotic map-based authentication and
key agreement scheme for multi-server environment.
Mathematics, 9(8):798.
Zhang, L. (2008). Cryptanalysis of the public key encryp-
tion based on multiple chaotic systems. Chaos, Soli-
tons & Fractals, 37(3):669–674.
Zhang, Y., Li, B., Wu, J., Liu, B., Chen, R., and Chang, J.
(2022). Efficient and privacy-preserving blockchain-
based multifactor device authentication protocol for
cross-domain IIoT. IEEE IOT J., 9(22):22501–22515.
Zhou, L., Li, X., Yeh, K.-H., Su, C., and Chiu, W.
(2019). Lightweight IoT-based authentication scheme
in cloud computing circumstance. Future Generation
Computer Systems, 91:244–251.
SECRYPT 2023 - 20th International Conference on Security and Cryptography
682