Kifle, Z. S., & Obsu, L. L. (2022). Mathematical modeling
for COVID-19 transmission dynamics: A case study in
Ethiopia. Results in Physics, 34, 105191.
https://doi.org/10.1016/j.rinp.2022.105191
Kim, Y., & Cho, N. (2022). A Simulation Study on Spread
of Disease and Control Measures in Closed Population
Using ABM. Computation, 10(1), 2. https://doi.org/
10.3390/computation10010002
Kong, L., Duan, M., Shi, J., Hong, J., Chang, Z., & Zhang,
Z. (2022). Compartmental structures used in modeling
COVID-19: A scoping review. Infectious Diseases of
Poverty, 11(1), 72. https://doi.org/10.1186/s40249-
022-01001-y
Kyriakidis, P., Kavroudakis, D., Fayad, P., Hadjipetrou, S.,
Leventis, G., & Papakonstantinou, A. (2021).
Promoting the adoption of agent-based modelling for
synergistic interventions and decision-making during
pandemic outbreaks. AGILE: GIScience Series, 2, 1–5.
https://doi.org/10.5194/agile-giss-2-44-2021
Liu, P., Beeler, P., & Chakrabarty, R. K. (2020). COVID-
19 Progression Timeline and Effectiveness of
Response-to-Spread Interventions across the United
States [Preprint]. Infectious Diseases (except
HIV/AIDS). https://doi.org/10.1101/2020.03.17.20037
770
Loraamm, R. W. (2020). Incorporating behavior into
animal movement modeling: A constrained agent-based
model for estimating visit probabilities in space-time
prisms. International Journal of Geographical
Information Science, 34(8), 1607–1627.
https://doi.org/10.1080/13658816.2019.1658875
Lorig, F., Johansson, E., & Davidsson, P. (2021). Agent-
Based Social Simulation of the Covid-19 Pandemic: A
Systematic Review. Journal of Artificial Societies and
Social Simulation, 24(3), 5. https://doi.org/10.
18564/jasss.4601
Mehdizadeh, M., Nordfjaern, T., & Klöckner, C. A. (2022).
A systematic review of the agent-based
modelling/simulation paradigm in mobility transition.
Technological Forecasting and Social Change,
184, 122011. https://doi.org/10.1016/j.techfore.2022.
122011
Merler, S., Ajelli, M., Fumanelli, L., Gomes, M. F. C.,
Piontti, A. P. y, Rossi, L., Chao, D. L., Longini, I. M.,
Halloran, M. E., & Vespignani, A. (2015).
Spatiotemporal spread of the 2014 outbreak of Ebola
virus disease in Liberia and the effectiveness of non-
pharmaceutical interventions: A computational
modelling analysis. The Lancet Infectious Diseases,
15(2), 204–211. https://doi. org/10.1016/S1473-3099
(14)71074-6
Moein, S., Nickaeen, N., Roointan, A., Borhani, N.,
Heidary, Z., Javanmard, S. H., Ghaisari, J., & Gheisari,
Y. (2021). Inefficiency of SIR models in forecasting
COVID-19 epidemic: A case study of Isfahan.
Scientific Reports, 11(1), 4725. https://doi.org/10.1038/
s41598-021-84055-6
Novakovic, A., & Marshall, A. H. (2022). The CP‐ABM
approach for modelling COVID‐19 infection dynamics
and quantifying the effects of non‐pharmaceutical
interventions. Pattern Recognition, 130, 108790.
https://doi.org/10.1016/j.patcog.2022.108790
Obrien, A. (2022). Infrastructure Solutions: How to make
public transport attractive (Infrastructure Solutions).
European Investment bank.
Ozik, J., Wozniak, J. M., Collier, N., Macal, C. M., &
Binois, M. (2021). A population data-driven workflow
for COVID-19 modeling and learning. The
International Journal of High Performance Computing
Applications, 35(5), 483–499. https://doi.org/10.1177/
10943420211035164
Shastry, V., Reeves, D. C., Willems, N., & Rai, V. (2022).
Policy and behavioral response to shock events: An
agent-based model of the effectiveness and equity of
policy design features. PLOS ONE, 17(1), e0262172.
https:// doi.org/10.1371/journal.pone.0262172
Silva, P. C. L., Batista, P. V. C., Lima, H. S., Alves, M. A.,
Guimarães, F. G., & Silva, R. C. P. (2020). COVID-
ABS: An agent-based model of COVID-19 epidemic to
simulate health and economic effects of social
distancing interventions. Chaos, Solitons & Fractals,
139, 110088. https://doi.org/10.1016/j.chaos.2020.
110088
Taghizadeh, E., & Mohammad-Djafari, A. (2022). SEIR
Modeling, Simulation, Parameter Estimation, and Their
Application for COVID-19 Epidemic Prediction.
MaxEnt 2022, 18. https://doi.org/10.3390/
psf2022005018
Tracy, M., Cerdá, M., & Keyes, K. M. (2018). Agent-Based
Modeling in Public Health: Current Applications and
Future Directions. Annual Review of Public Health,
39(1), 77–94. https://doi.org/10.1146/annurev-
publhealth-040617-014317
Vytla, V., Ramakuri, S. K., Peddi, A., Kalyan Srinivas, K.,
& Nithish Ragav, N. (2021). Mathematical Models for
Predicting Covid-19 Pandemic: A Review. Journal of
Physics: Conference Series, 1797(1), 012009.
https://doi.org/10.1088/1742-6596/1797/1/012009
Willem, L. (2015). Agent-based models for infectious
disease transmission exploration, estimation &
computational efficiency.
World Health Organization. (2023). WHO Coronavirus
(COVID-19) Dashboard. https://covid19.who.int
Yang, W., Zhang, D., Peng, L., Zhuge, C., & Hong, L.
(2021). Rational evaluation of various epidemic models
based on the COVID-19 data of China. Epidemics,
37, 100501. https://doi.org/10.1016/j.epidem.2021.
100501.