REFERENCES
Breiman, L. (1996). Bagging predictors. Machine Learning,
24(2):123–140.
Breiman, L. (2001). Random Forests. Machine Learning,
45(1):5–32.
Brown, G., Wyatt, J., Harris, R., and Yao, X. (2005). Diver-
sity Creation Methods: A Survey and Categorisation.
Information Fusion, 6(1):5–20.
Dietterich, T. G. (2000). Ensemble Methods in Machine
Learning. In Goos, G., Hartmanis, J., and van Leeuwen,
J., editors, Multiple Classifier Systems, volume 1857,
pages 1–15. Springer-Verlag, Berlin, Heidelberg.
Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy,
P., Li, M., and Smola, A. (2020). AutoGluon-Tabular:
Robust and Accurate AutoML for Structured Data.
Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.,
Blum, M., and Hutter, F. (2015). Efficient and Robust
Automated Machine Learning. In Cortes, C., Lawrence,
N., Lee, D., Sugiyama, M., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 28. Curran Associates, Inc.
Freund, Y. and Schapire, R. E. (1997). A Decision-Theoretic
Generalization of On-Line Learning and an Applica-
tion to Boosting. Journal of Computer and System
Sciences, 55(1):119–139.
Hansen, L. and Salamon, P. (Oct./1990). Neural Network
Ensembles. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 12(10):993–1001.
He, X., Zhao, K., and Chu, X. (2021). AutoML: A Survey of
the State-of-the-Art. Knowledge-Based Systems, 212.
Hirsch, V., Reimann, P., and Mitschang, B. (2019). Data-
Driven Fault Diagnosis in End-of-Line Testing of Com-
plex Products. In Proc. of the 6
th
IEEE International
Conference on Data Science and Advanced Analytics
(DSAA), Washington, D.C., USA. IEEE.
Hirsch, V., Reimann, P., Treder-Tschechlov, D., Schwarz, H.,
and Mitschang, B. (2023). Exploiting Domain Knowl-
edge to Address Class Imbalance and a Heterogeneous
Feature Space in Multi-Class Classification. The VLDB
Journal.
Kuncheva, L. I. (2004). Combining Pattern Classifiers:
Methods and Algorithms. J. Wiley, Hoboken, NJ.
Lacoste, A., Larochelle, H., Marchand, M., and Laviolette, F.
(2014). Sequential Model-Based Ensemble Optimiza-
tion. In Proc. of the 13
th
Conference on Uncertainty in
Artificial Intelligence, UAI’14, page 440–448, Arling-
ton, Virginia, USA. AUAI Press.
LeDell, E. and Poirier, S. (2020). H2O AutoML: Scalable
Automatic Machine Learning. In Proc. of the AutoML
Workshop at ICML.
L
´
evesque, J.-C., Gagn
´
e, C., and Sabourin, R. (2016).
Bayesian Hyperparameter Optimization for Ensemble
Learning. In Ihler, A. and Janzing, D., editors, Proc.
of the 32
nd
Conference on Uncertainty in Artificial
Intelligence, New York City, NY, USA. AUAI Press.
Moussa, R., Guizzo, G., and Sarro, F. (2022). MEG: Multi-
objective Ensemble Generation for Software Defect
Prediction. In ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement
(ESEM), pages 159–170, Helsinki Finland. ACM.
Polikar, R. (2006). Ensemble Based Systems in Decision
Making. IEEE Circuits and Systems Magazine, 6(3):21–
45.
Schapire, R. E. (1990). The Strength of Weak Learnability.
Machine Learning, 5(2):197–227.
Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K.
(2013). Auto-WEKA: Combined Selection and Hyper-
parameter Optimization of Classification Algorithms.
In Proc. of the 19
th
ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 847–855, Chicago, IL, USA. ACM.
Tin Kam Ho (Aug./1998). The Random Subspace Method
for Constructing Decision Forests. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
20(8):832–844.
Villanueva Zacarias, A. G., Weber, C., Reimann, P., and
Mitschang, B. (2021). AssistML: A Concept to Rec-
ommend ML Solutions for Predictive Use Cases. In
Proc. of the 8
th
International Conference on Data Sci-
ence and Advanced Analytics (DSAA), pages 148–155.
IEEE.
Wegier, W., Koziarski, M., and Wozniak, M. (2022). Multi-
criteria Classifier Ensemble Learning for Imbalanced
Data. IEEE Access, 10:16807–16818.
Wilhelm, Y., Reimann, P., Gauchel, W., Klein, S., and
Mitschang, B. (2023). PUSION- A Generic and Auto-
mated Framework for Decision Fusion. In Proc. of the
39
th
International Conference on Data Engineering
(ICDE), Anaheim, CA, USA. IEEE.
Wilhelm, Y., Reimann, P., Gauchel, W., and Mitschang,
B. (2021). Overview on Hybrid Approaches to Fault
Detection and Diagnosis: Combining Data-driven,
Physics-based and Knowledge-based Models. Pro-
cedia CIRP, 99:278–283.
Wilhelm, Y., Schreier, U., Reimann, P., Mitschang, B., and
Ziekow, H. (2020). Data Science Approaches to Qual-
ity Control in Manufacturing: A Review of Problems,
Challenges and Architecture. In Proc. of the 14
th
Sym-
posium on Service-Oriented Computing (SummerSOC),
Communications in Computer and Information Science
(CCIS), pages 45–65. Springer-Verlag.
Wolpert, D. H. (1992). Stacked Generalization. Neural
Networks, 5(2):241–259.
Z
¨
oller, M.-A. and Huber, M. F. (2021). Benchmark and
Survey of Automated Machine Learning Frameworks.
Journal of Artificial Intelligence Research, 70:409–
472.
ICEIS 2023 - 25th International Conference on Enterprise Information Systems
622