partners and assumes hard division of activities in
accordance to the competencies of the collaborating
parties), and the operational configuration the most
suitable for the dynamic production system
configuration (since it heavily depends on the
analysis of contextual information).
Based on the case study analysis, seven standard
tasks that have to be solved in human-AI
collaboration processes are defined together with
their specifics and ways of solving.
ACKNOWLEDGEMENTS
The research is funded by the Russian Science
Foundation (project 22-11-00214).
REFERENCES
Bragilevsky, L., & Bajic, I. V. (2020). Tensor Completion
Methods for Collaborative Intelligence. IEEE Access, 8,
41162–41174. https://doi.org/10.1109/ACCESS.20
20.2977050
Candrian, C., & Scherer, A. (2022). Rise of the machines:
Delegating decisions to autonomous AI. Computers in
Human Behavior, 134, 107308. https://doi.org/
10.1016/j.chb.2022.107308
Crowley, J. L., Coutaz, J., Grosinger, J., Vazquez-Salceda, J.,
Angulo, C., Sanfeliu, A., Iocchi, L., & Cohn, A. G.
(2022). A Hierarchical Framework for Collaborative
Artificial Intelligence. IEEE Pervasive Computing, 1–10.
https://doi.org/10.1109/MPRV.2022.3208321
Dellermann, D., Calma, A., Lipusch, N., Weber, T., Weigel,
S., & Ebel, P. (2019). The Future of Human-AI
Collaboration: A Taxonomy of Design Knowledge for
Hybrid Intelligence Systems. In T. X. Bui (Ed.),
Proceedings of the 52nd Annual Hawaii International
Conference on System Sciences (pp. 274–283).
https://doi.org/10.24251/HICSS.2019.034
Demartini, G., Mizzaro, S., & Spina, D. (2020). Human-in-
the-loop Artificial Intelligence for Fighting Online
Misinformation: Challenges and Opportunities. The
Bulletin of the Technical Committee on Data
Engineering, 43(3), 65–74.
Fuegener, A., Grahl, J., Gupta, A., & Ketter, W. (2022).
Cognitive challenges in human-AI collaboration:
Investigating the path towards productive delegation.
Information Systems Research, 33(2), 678–696.
Gavriushenko, M., Kaikova, O., & Terziyan, V. (2020).
Bridging human and machine learning for the needs of
collective intelligence development. Procedia
Manufacturing, 42, 302–306. https://doi.org/10.1016/
j.promfg.2020.02.092
Hemmer, P., Schemmer, M., Riefle, L., Rosellen, N.,
Vössing, M., & Kühl, N. (2022). Factors that influence
the adoption of human-AI collaboration in clinical
decision-making. [ArXiv].
Hooshangi, S., & Sibdari, S. (2022). Human-Machine Hybrid
Decision Making with Applications in Auditing. Hawaii
International Conference on System Sciences 2020, 216–
225. https://doi.org/10.24251/HIC SS.2022.026
Järvenpää, E., Siltala, N., Hylli, O., & Lanz, M. (2019).
Implementation of capability matchmaking software
facilitating faster production system design and
reconfiguration planning. Journal of Manufacturing
Systems, 53, 261–270. https://doi.org/10.1016/j.jmsy.
2019.10.003
Lai, V., Carton, S., Bhatnagar, R., Liao, Q. V., Zhang, Y., &
Tan, C. (2022). Human-AI Collaboration via Conditional
Delegation: A Case Study of Content Moderation. CHI
Conference on Human Factors in Computing Systems,
1–18. https://doi.org/10.1145/ 3491102.3501999
Lee, M. H., Siewiorek, D. P. P., Smailagic, A., Bernardino,
A., & Bermúdez i Badia, S. B. (2021). A Human-AI
Collaborative Approach for Clinical Decision Making on
Rehabilitation Assessment. Proceedings of the 2021 CHI
Conference on Human Factors in Computing Systems,
1–14. https://doi.org/10.1145/3411764.34454 72
Malone, T. W., & Bernstein, M. S. (2022). Handbook of
Collective Intelligence. MIT Press.
Mykoniatis, K., & Harris, G. A. (2021). A digital twin
emulator of a modular production system using a data-
driven hybrid modeling and simulation approach.
Journal of Intelligent Manufacturing, 32(7), 1899–1911.
https://doi.org/10.1007/s10845-020-01724-5
Nakahashi, R., & Yamada, S. (2021). Balancing Performance
and Human Autonomy With Implicit Guidance Agent.
Frontiers in Artificial Intelligence, 4, [Electronic
resource]. https://doi.org/10.3389/frai.20 21.736321
Paschen, J., Wilson, M., & Ferreira, J. J. (2020).
Collaborative intelligence: How human and artificial
intelligence create value along the B2B sales funnel.
Business Horizons, 63(3), 403–414. https://doi.org/
10.1016/j.bushor.2020.01.003
Peeters, M. M. M., van Diggelen, J., van den Bosch, K.,
Bronkhorst, A., Neerincx, M. A., Schraagen, J. M., &
Raaijmakers, S. (2021). Hybrid collective intelligence in
a human–AI society. AI & SOCIETY, 36(1), 217–238.
https://doi.org/10.1007/s00146-020-01005-y
Smirnov, A., & Ponomarev, A. (2021). Stimulating Self-
Organization in Human-Machine Collective Intelligence
Environment. 2021 IEEE Conference on Cognitive and
Computational Aspects of Situation Management
(CogSIMA), 94–102. https://doi.org/10.1109/CogSIMA5
1574.2021.9475937
Suran, S., Pattanaik, V., & Draheim, D. (2021). Frameworks
for Collective Intelligence. ACM Computing Surveys,
53(1), 1–36. https://doi.org/10.11 45/3368986
van den Bosch, K., & Bronkhorst, A. (2018). Human-AI
cooperation to benefit military decision making.
Proceedings of Specialist Meeting Big Data & Artificial
Intelligence for Military Decision Making.
https://doi.org/10.14339/STO-MP-IST-160