Bocconi, S., Chioccariello, A., Kampylis, P., Dagienė, V.,
Wastiau, P., Engelhardt, K., Earp, J., Horvath, M.A.,
Jasutė, E., Malagoli, C., Masiulionytė-Dagienė, V. and
Stupurienė, G. (2022). Reviewing Computational
Thinking in Compulsory Education, Inamorato dos
Santos, A., Cachia, R., Giannoutsou, N. and Punie, Y.
editor(s), Publications Office of the European Union,
Luxembourg. 10.2760/126955
Colette-Project. (2022). Computational Thinking Learning
Environment for Teachers in Europe https://colette-
project.eu 14.11.2022
COOL Lab Talents Club. (2022). https://www.cool-
lab.net/clubs 13.12.2022
Csizmadia, A., Curzon, P., Dorling, M., Humphreys, S.,
Ng, T., Selby, C. and Woollard, J. (2015).
Computational thinking - a guide for teachers.
Swindon. Computing at School. 1-8.
https://eprints.soton.ac.uk/424545/
Davis, F. D. (1985). A technology acceptance model for
empirically testing new end-user information systems:
Theory and results (Doctoral dissertation,
Massachusetts Institute of Technology).
Drigas, A., Pappas, M. (2015). A Review of Mobile
Learning Applications for Mathematics. International
Journal of Interactive Mobile Technologies (iJIM),
9(3), 18–23. https://doi.org/10.3991/ijim.v9i3.4420
González, E.; De La Pena, A.; Cortés, F.; Molano, D.;
Baron, B.; Gualteros, N.; Páez, J.; Parra, C. Robotic
Theater: An Architecture for Competency Based
Learning. In Proc. Adv. Intell. Syst. Comput. 126–137
[Google Scholar]
Jong, T. de, Joolingen, W.R. van. (1998). Scientific
discovery learning with computer simulations of
conceptual domains. Review of Educational Research,
68, 179-202.
Ledl, T. (2017). Upside down Pyramid, Bratislava.
https://commons.wikimedia.org/wiki/File:Upside_dow
n_Pyramid,_Bratislava_02.jpg 17.1.2023
Lv, L., Zhong, B., Liu, X. (2022). A literature review on the
empirical studies of the integration of mathematics and
computational thinking. Educ Inf Technol.
https://doi.org/10.1007/s10639-022-11518-2
Lin, Y., David Weintrop, D. (2021). The landscape of
Block-based programming: Characteristics of block-
based environments and how they support the transition
to text-based programming. Journal of Comp.
Languages. 67(1) 10.1016/j.cola.2021.101075
Mayring, Ph. (2010). Qualitative Inhaltsanalyse.
Grundformen und Techniken.11. Weinheim: Beltz.
McGee, M. G. (1979). Human spatial abilities:
Psychometric studies and environmental, genetic,
hormonal, and neurological influences. Psychological
Bulletin, 86(5), 889–918. https://doi.org/10.1037/0033-
2909.86.5.889
Milicic, G., van Borkulo, S.P., Medova, J., Wetzel, S.,
Ludwig, M. (2021). Design and Development of a
Learning Environment for Computational Thinking:
The Erasmus+ COLETTE Project. Proceedings of the
Conference EduLearn 2021. 1(1). 7376-7383. DOI:
10.21125/edulearn.2021.1495
Musante, K., DeWalt, B. (2010). Participant Observation:
A Guide for Fieldworkers. AltaMira Press
.https://books.google.at/books?id=ymJJUkR7s3UC
Papadakis, S. (2022). Can Preschoolers Learn
Computational Thinking and Coding Skills with
ScratchJr? A Systematic Literature Review.
International Journal of Educational Reform.
https://doi.org/10.1177/10567879221076077
Pou, A.V., Canaleta, X., Fonseca, D. (2022) Computational
Thinking and Educational Robotics Integrated into
Project-Based Learning. Sensor. 22. 3746.
https://doi.org/10.3390/s22103746
Saritepeci, M., Yildiz-Durak, H. (2017). Analyzing the
Effect of Block and Robotic Coding Activities on
Computational Thinking in Programming Education. In
book: Educational Research and Practice. Chapter: 49.
Publisher: St. Kliment Ohridski University Press.
https://www.researchgate.net/publication/316890358_
Analyzing_the_Effect_of_Block_and_Robotic_Codin
g_Activities_on_Computational_Thinking_in_Progra
mming_Education 12.11.2022
Scratch. (2022). Scratch - Imagine, Program, Share.
https://scratch.mit.edu/ 26.11.2022
Shih, W.C. (2017). Mining Learners' Behavioral Sequential
Patterns in a Blockly Visual Programming Educational
Game. In International Conference on Industrial
Engineering, Management Science and Application
(ICIMSA). 1-2. 10.1109/ICIMSA.2017.7985594
Vetter, T.R. (2017). Descriptive Statistics: Reporting the
Answers to the 5 Basic Questions of Who, What, Why,
When, Where, and a Sixth, So What? Anesth Analg.
125(5). 1797-180 10.1213/ANE.0000000000002471
Yamashita, S., Tsunoda, M., Yokogawa, T. (2017). Visual
Programming Language for Model Checkers Based on
Google Blockly. In Felderer, M., Méndez Fernández,
D., Turhan, B., Kalinowski, M., Sarro, F., Winkler, D.
(Eds.), Product-Focused Software Process
Improvement. PROFES. Lecture Notes in Computer
Science, 10611. 597–601. Springe. Cham.
https://doi.org/10.1007/978-3-319-69926-4_49
Weintrop, D., & Wilensky, U. (2015). To block or not to
block, that is the question: students' perceptions of
blocks-based programming. Proceedings of the 14th
International Conference on Interaction Design and
Children. 10.1145/2771839.2771860
Willacy, H., Calder, N. (2017). Making Mathematics
Learning More Engaging for Students in Health
Schools through the Use of Apps. Education Sciences,
7(2), 48. https://doi.org/10.3390/educsci7020048
Xu, Z., Ritzhaupt, A.D., Tian, F., Umapathy, K. (2019).
Block-based versus text-based programming
environments on novice student learning outcomes: a
meta-analysis study, Computer Science Education,
29(2-3), 177-204. 10.1080/08993408.2019.1565233