isterio de Econom
´
ıa y Competitividad, by 839
FEDER (EU) funds, and PID2021-122136OB-C21
from MCIN/AEI/10.13039/501100011033/FEDER,
EU.
REFERENCES
Aigner, W., Miksch, S., M
¨
uller, W., Schumann, H., and
Tominski, C. (2008). Visual methods for analyzing
time-oriented data. IEEE Transactions on Visualiza-
tion and Computer Graphics, 14:47–60.
Aigner, W., Miksch, S., M
¨
uller, W., Schumann, H., and
Tominski, C. (2011). Visualizing time-oriented data-
a systematic view. Computers and Graphics (Perga-
mon), 31:401–409.
Bocher, E., Guillaume, G., Picaut, J., Petit, G., and Fortin,
N. (2019). Noisemodelling: An open source gis based
tool to produce environmental noise maps. Isprs in-
ternational journal of geo-information, 8(3):130.
Cao, X., Wang, M., and Liu, X. (2020). Application of big
data visualization in urban planning. In IOP Confer-
ence Series: Earth and Environmental Science, vol-
ume 440, page 042066. IOP Publishing.
Cramer, J., Wu, H.-H., Salamon, J., and Bello, J. P. (2019).
Look, listen, and learn more: Design choices for deep
audio embeddings. In ICASSP 2019-2019 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 3852–3856. IEEE.
Fonseca, E., Ortego, D., McGuinness, K., O’Connor, N. E.,
and Serra, X. (2021). Unsupervised contrastive learn-
ing of sound event representations. In ICASSP 2021-
2021 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pages 371–
375. IEEE.
Franco-Moreno, J. J., Alsina-Pages, R. M., and V
´
azquez,
P. P. (2022). Visual analysis of environmental noise
data. In 16th International Conference on Computer
Graphics, Visualization, Computer Vision and Image
Processing (CGVCVIP 2022), pages 45–53.
Gramazio, C. C., Laidlaw, D. H., and Schloss, K. B. (2017).
Colorgorical: Creating discriminable and preferable
color palettes for information visualization. IEEE
Transactions on Visualization and Computer Graph-
ics, 23:521–530.
Hammer, M. S., Swinburn, T. K., and Neitzel, R. L. (2014).
Environmental noise pollution in the united states: de-
veloping an effective public health response. Environ-
mental health perspectives, 122(2):115–119.
Hogr
¨
afer, M., Heitzler, M., and Schulz, H.-J. (2020). The
state of the art in map-like visualization. In Computer
Graphics Forum, volume 39, pages 647–674. Wiley
Online Library.
Koutini, K., Eghbal-zadeh, H., and Widmer, G.
(2019). Receptive-field-regularized cnn variants
for acoustic scene classification. arXiv preprint
arXiv:1909.02859.
Maisonneuve, N., Stevens, M., Niessen, M. E., and Steels,
L. (2009). Noisetube: Measuring and mapping noise
pollution with mobile phones. In Information tech-
nologies in environmental engineering, pages 215–
228. Springer.
Maynard Kristof (2021). Music-tag library, 0.4.3.
https://pypi.org/project/music-tag/. checked Dec
2022.
McFee, B., Raffel, C., Liang, D., Ellis, D., McVicar, M.,
Battenberg, E., and Nieto, O. (2015). librosa: Audio
and music signal analysis in python. Proceedings of
the 14th Python in Science Conference, pages 18–24.
McInnes, L., Healy, J., and Melville, J. (2018). Umap: Uni-
form manifold approximation and projection for di-
mension reduction.
Miksch, S. and Aigner, W. (2014). A matter of time: Ap-
plying a data–users–tasks design triangle to visual an-
alytics of time-oriented data. Computers & Graphics,
38:286–290.
Miranda, F., Lage, M., Doraiswamy, H., Mydlarz, C., Sala-
mon, J., Lockerman, Y., Freire, J., and Silva, C. T.
(2018). Time lattice: A data structure for the interac-
tive visual analysis of large time series. In Computer
Graphics Forum, volume 37, pages 23–35. Wiley On-
line Library.
Mooney, P., Minghini, M., et al. (2017). A review of open-
streetmap data.
Morillas, J. M. B., Gozalo, G. R., Gonz
´
alez, D. M., Mor-
aga, P. A., and V
´
ılchez-G
´
omez, R. (2018). Noise pol-
lution and urban planning. Current Pollution Reports,
4:208–219.
Neitzel, R. L., Gershon, R. R., McAlexander, T. P., Magda,
L. A., and Pearson, J. M. (2012). Exposures to
transit and other sources of noise among new york
city residents. Environmental science & technology,
46(1):500–508.
Organization, W. H. et al. (2011). Burden of disease from
environmental noise: Quantification of healthy life
years lost in Europe. World Health Organization. Re-
gional Office for Europe.
Park, T. H., Turner, J., Musick, M., Lee, J. H., Jacoby, C.,
Mydlarz, C., and Salamon, J. (2014). Sensing urban
soundscapes. In EDBT/ICDT Workshops, pages 375–
382.
Rosenberg, D. and Grafton, A. (2013). Cartographies of
time: A history of the timeline. Princeton Architectural
Press.
Rulff, J., Miranda, F., Hosseini, M., Lage, M., Cartwright,
M., Dove, G., Bello, J., and Silva, C. T. (2022). Urban
rhapsody: Large-scale exploration of urban sound-
scapes. arXiv preprint arXiv:2205.13064.
Socor
´
o, J. C., Al
´
ıas, F., and Alsina-Pag
`
es, R. M. (2017).
An anomalous noise events detector for dynamic road
traffic noise mapping in real-life urban and suburban
environments. Sensors, 17(10):2323.
Vida
˜
na-Vila, E., Stowell, D., Navarro, J., and Alsina-Pag
`
es,
R. M. (2021). Multilabel acoustic event classification
for urban sound monitoring at a traffic intersection.
Visual Analysis of Multi-Labelled Temporal Noise Data from Multiple Sensors
267