through iBB – Institute for Bioengineering and Bio-
sciences (UIDB/04565/2020 and UIDP/04565/2020).
The authors acknowledge funding received from FCT
project “SMART” (PTDC/EQU-EQU/3853/2020),
and by IT - Instituto de Telecomunicações - research
grant BIM/Nº16/2022 - B-B01049.
REFERENCES
Barrett, T., Wilhite, S. E., Ledoux, P., Evangelista, C., Kim,
I. F., Tomashevsky, M., Marshall, K. A., Phillippy,
K. H., Sherman, P. M., Holko, M., Yefanov, A., Lee,
H., Zhang, N., Robertson, C. L., Serova, N., Davis,
S., and Soboleva, A. (2012). NCBI GEO: archive for
functional genomics data sets—update. Nucleic Acids
Research, 41(D1):D991–D995.
Branco, M. A., Cabral, J. M., and Diogo, M. M. (2020).
From human pluripotent stem cells to 3d cardiac mi-
crotissues: Progress, applications and challenges. Bio-
engineering, 7:92.
Branco, M. A., Cotovio, J. P., Rodrigues, C. A. V., Vaz,
S. H., Fernandes, T. G., Moreira, L. M., Cabral, J.
M. S., and Diogo, M. M. (2019). Transcriptomic
analysis of 3d cardiac differentiation of human in-
duced pluripotent stem cells reveals faster cardiomy-
ocyte maturation compared to 2d culture. Scientific
Reports, 9:9229.
Burridge, P., Keller, G., Gold, J., and Wu, J. (2012). Produc-
tion of de novo cardiomyocytes: Human pluripotent
stem cell differentiation and direct reprogramming.
Cell Stem Cell, 10:16–28.
Burridge, P. W., Sharma, A., and Wu, J. C. (2015). Ge-
netic and epigenetic regulation of human cardiac
reprogramming and differentiation in regenerative
medicine. Annual Review of Genetics, 49:461–484.
Cannoodt, R., Saelens, W., and Saeys, Y. (2016). Compu-
tational methods for trajectory inference from single-
cell transcriptomics. European Journal of Immunol-
ogy, 46:2496–2506.
D’haeseleer, P. (2005). How does gene expression cluster-
ing work? Nature Biotechnology, 23:1499–1501.
Frank, S., Ahuja, G., Bartsch, D., Russ, N., Yao, W., Kuo,
J. C. C., Derks, J. P., Akhade, V. S., Kargapolova,
Y., Georgomanolis, T., Messling, J. E., Gramm, M.,
Brant, L., Rehimi, R., Vargas, N. E., Kuroczik, A.,
Yang, T. P., Sahito, R. G. A., Franzen, J., Hescheler,
J., Sachinidis, A., Peifer, M., Rada-Iglesias, A., Kan-
duri, M., Costa, I. G., Kanduri, C., Papantonis, A.,
and Kurian, L. (2019). yylnct defines a class of di-
vergently transcribed lncrnas and safeguards the t-
mediated mesodermal commitment of human pscs.
Cell Stem Cell, 24:318–327.e8.
Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Ex-
ploring network structure, dynamics, and function us-
ing networkx. In Varoquaux, G., Vaught, T., and Mill-
man, J., editors, Proceedings of the 7th Python in Sci-
ence Conference, pages 11 – 15, Pasadena, CA USA.
Kempf, H., Andree, B., and Zweigerdt, R. (2016). Large-
scale production of human pluripotent stem cell de-
rived cardiomyocytes. Advanced Drug Delivery Re-
views, 96:18–30.
Leitolis, A., Robert, A. W., Pereira, I. T., Correa, A., and
Stimamiglio, M. A. (2019). Cardiomyogenesis mod-
eling using pluripotent stem cells: The role of mi-
croenvironmental signaling. Frontiers in Cell and De-
velopmental Biology, 7.
Löffler-Wirth, H., Kalcher, M., and Binder, H. (2015). opos-
som: R-package for high-dimensional portraying of
genome-wide expression landscapes on bioconductor.
Bioinformatics, 31:3225–3227.
Mi, H., Ebert, D., Muruganujan, A., Mills, C., Albou, L. P.,
Mushayamaha, T., and Thomas, P. D. (2021). Panther
version 16: a revised family classification, tree-based
classification tool, enhancer regions and extensive api.
Nucleic Acids Research, 49:D394–D403.
Mi, H., Muruganujan, A., Huang, X., Ebert, D., Mills, C.,
Guo, X., and Thomas, P. D. (2019). Protocol up-
date for large-scale genome and gene function analy-
sis with panther classification system (v.14.0). Nature
protocols, 14:703.
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.
Robinson, M. D., McCarthy, D. J., and Smyth, G. K.
(2010). edgeR: a Bioconductor package for differ-
ential expression analysis of digital gene expression
data. Bioinformatics, 26(1):139–140.
Ruan, H., Liao, Y., Ren, Z., Mao, L., Yao, F., Yu, P., Ye, Y.,
Zhang, Z., Li, S., Xu, H., Liu, J., Diao, L., Zhou, B.,
Han, L., and Wang, L. (2019). Single-cell reconstruc-
tion of differentiation trajectory reveals a critical role
of ets1 in human cardiac lineage commitment. BMC
Biology, 17:1–16.
Saelens, W., Cannoodt, R., Todorov, H., and Saeys, Y.
(2019). A comparison of single-cell trajectory infer-
ence methods. Nature Biotechnology, 37:547–554.
Schmidt, M., Loeffler-Wirth, H., and Binder, H. (2020). De-
velopmental scrnseq trajectories in gene-and cell-state
space—the flatworm example. Genes, 11:1–21.
Van Verk, M. C., Hickman, R., Pieterse, C. M., and Van
Wees, S. C. (2013). RNA-Seq: revelation of the mes-
sengers. Trends in Plant Science, 18(4):175–179.
WHO (2021). Cardiovascular diseases (cvds).
https://www.who.int/news-room/fact-
sheets/detail/cardiovascular-diseases-(cvds) (accessed
2022-05-16).
Unsupervised Cardiac Differentiation Stage Portraying and Pseudotime Mapping Based on Gene Expression Data
117