A Difference Evaluator for Alternating Images. Pro-
ceedings of the ACM on Computer Graphics and In-
teractive Techniques, 3(2):15:1–15:23.
B
¨
arz, J., Henrich, N., and M
¨
uller, S. (2010). Validating pho-
tometric and colorimetric consistency of physically-
based image synthesis. In 5th European Confer-
ence on Colour in Graphics, Imaging, and Vision
and 12th International Symposium on Multispectral
Colour Science, CGIV 2010/MCS’10, Joensuu, Fin-
land, June 14-17, 2010, pages 148–154. IS&T - The
Society for Imaging Science and Technology.
Bitterli, B. (2016). Rendering resources. https://benedikt-
bitterli.me/resources/.
Celarek, A., Jakob, W., Wimmer, M., and Lehtinen, J.
(2019). Quantifying the error of light transport algo-
rithms. Comput. Graphics Forum, 38(4):111–121.
Clausen, O., Marroquim, R., and Fuhrmann, A. (2018). Ac-
quisition and validation of spectral ground truth data
for predictive rendering of rough surfaces. In Com-
puter Graphics Forum, volume 37, pages 1–12. Wiley
Online Library.
Daly, S. (1993). Digital images and human vision. chap-
ter The Visible Differences Predictor: An Algorithm
for the Assessment of Image Fidelity, pages 179–206.
MIT Press, Cambridge, MA, USA.
Farrugia, J.-P. and P
´
eroche, B. (2004). A progressive ren-
dering algorithm using an adaptive perceptually based
image metric. Comput. Graphics Forum, 23(3):605–
614.
Goral, C. M., Torrance, K. E., Greenberg, D. P., and Bat-
taile, B. (1984). Modeling the interaction of light be-
tween diffuse surfaces. In Proceedings of the 11th
Annual Conference on Computer Graphics and Inter-
active Techniques, SIGGRAPH ’84, pages 213–222,
New York, NY, USA. ACM.
Jakob, W. (2010). Mitsuba renderer. http://www.mitsuba-
renderer.org.
Jones, N. L. and Reinhart, C. F. (2017). Experimental vali-
dation of ray tracing as a means of image-based visual
discomfort prediction. Build. Environ., 113:131–150.
Advances in daylighting and visual comfort research.
Jung, A., Hanika, J., and Dachsbacher, C. (2020). Detect-
ing bias in Monte Carlo renderers using Welch’s t-test.
Journal of Computer Graphics Techniques (JCGT),
9(2):1–25.
Kajiya, J. T. (1986). The rendering equation. SIGGRAPH
Comput. Graph., 20(4):143–150.
Mantiuk, R., Daly, S. J., Myszkowski, K., and Seidel, H.
(2005). Predicting visible differences in high dynamic
range images: model and its calibration. In Rogowitz,
B. E., Pappas, T. N., and Daly, S. J., editors, Human
Vision and Electronic Imaging X, San Jose, CA, USA,
January 17, 2005, volume 5666 of SPIE Proceedings,
pages 204–214. SPIE.
Mantiuk, R., Kim, K. J., Rempel, A. G., and Heidrich, W.
(2011). HDR-VDP-2: a calibrated visual metric for
visibility and quality predictions in all luminance con-
ditions. ACM Trans. Graph., 30(4):40:1–40:14.
McNamara, A. (2006). Exploring visual and automatic
measures of perceptual fidelity in real and simulated
imagery. ACM Trans. Appl. Percept., 3(3):217–238.
McNamara, A., Chalmers, A., Troscianko, T., and Gilchrist,
I. (2000). Comparing real & synthetic scenes using
human judgements of lightness. In P
´
eroche, B. and
Rushmeier, H., editors, Rendering Techniques 2000,
pages 207–218, Vienna. Springer Vienna.
Meneghel, G. B. and Netto, M. L. (2015). A comparison
of global illumination methods using perceptual qual-
ity metrics. In 2015 28th SIBGRAPI Conference on
Graphics, Patterns and Images, pages 33–40.
Meseth, J., M
¨
uller, G., Klein, R., R
¨
oder, F., and Arnold, M.
(2006). Verification of rendering quality from mea-
sured BTFs. In Proceedings of the 3rd Symposium
on Applied Perception in Graphics and Visualization,
APGV ’06, page 127–134, New York, NY, USA. As-
sociation for Computing Machinery.
Myszkowski, K. (1998). The visible differences predictor:
Applications to global illumination problems. In Ren-
dering Techniques.
Narwaria, M., Mantiuk, R. K., Da Silva, M. P., and
Le Callet, P. (2015). HDR-VDP-2.2: a calibrated
method for objective quality prediction of high-
dynamic range and standard images. J. Electron.
Imaging, 24(1):010501–010501.
Pattanaik, S. N., Ferwerda, J. A., Fairchild, M. D., and
Greenberg, D. P. (1998). A multiscale model of adap-
tation and spatial vision for realistic image display. In
Cunningham, S., Bransford, W., and Cohen, M. F., ed-
itors, Proceedings of the 25th Annual Conference on
Computer Graphics and Interactive Techniques, SIG-
GRAPH 1998, Orlando, FL, USA, July 19-24, 1998,
pages 287–298. ACM.
Ramasubramanian, M., Pattanaik, S. N., and Greenberg,
D. P. (1999). A perceptually based physical error met-
ric for realistic image synthesis. In Proceedings of
the 26th Annual Conference on Computer Graphics
and Interactive Techniques, SIGGRAPH ’99, pages
73–82, New York, NY, USA. ACM Press/Addison-
Wesley Publishing Co.
Reinhard, E., Stark, M., Shirley, P., and Ferwerda, J. (2002).
Photographic tone reproduction for digital images.
ACM Trans. Graph., 21(3):267–276.
Schregle, R. and Wienold, J. (2004). Physical validation of
global illumination methods: Measurement and error
analysis. Comput. Graphics Forum, 23(4):761–781.
Subr, K. and Arvo, J. (2007). Statistical hypothesis testing
for assessing Monte Carlo estimators: Applications to
image synthesis. In Computer Graphics and Applica-
tions, 2007. PG’07. 15th Pacific Conference on, pages
106–115. IEEE.
Ulbricht, C., Wilkie, A., and Purgathofer, W. (2006). Verifi-
cation of physically based rendering algorithms. Com-
put. Graphics Forum, 25(2):237–255.
Volevich, V., Myszkowski, K., Khodulev, A., and Kopylov,
E. A. (2000). Using the visual differences predictor
to improve performance of progressive global illumi-
nation computation. ACM Trans. Graph., 19(2):122–
161.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visibil-
ity to structural similarity. IEEE Trans. Image Pro-
cessing, 13(4):600–612.
Welford, B. P. (1962). Note on a method for calculating cor-
rected sums of squares and products. Technometrics,
4(3):419–420.
Whittle, J., Jones, M. W., and Mantiuk, R. (2017). Analysis
of reported error in Monte Carlo rendered images. The
Visual Computer, 33(6):705–713.
GRAPP 2023 - 18th International Conference on Computer Graphics Theory and Applications
130