estimation for snp and ngs data. Bioinformatics,
33(14):2148–2155.
Eager, D. L., Zahorjan, J., and Lazowska, E. D. (1989).
Speedup versus efficiency in parallel systems. IEEE
Transactions on Computers, 38(3):408–423.
Elgart, M., Lyons, G., Romero-Brufau, S., Kurniansyah, N.,
Brody, J. A., Guo, X., Lin, H. J., Raffield, L., Gao, Y.,
Chen, H., et al. (2022). Non-linear machine learning
models incorporating snps and prs improve polygenic
prediction in diverse human populations. Communi-
cations biology, 5(1):1–12.
Hemani, G., Theocharidis, A., Wei, W., and Haley, C.
(2011). Epigpu: exhaustive pairwise epistasis scans
parallelized on consumer level graphics cards. Bioin-
formatics, 27(11):1462–1465.
Hu, X., Liu, Q., Zhang, Z., Li, Z., Wang, S., He, L., and Shi,
Y. (2010). Shesisepi, a gpu-enhanced genome-wide
snp-snp interaction scanning algorithm, efficiently re-
veals the risk genetic epistasis in bipolar disorder. Cell
research, 20(7):854.
Jia, M., Guan, J., Zhai, Z., Geng, S., Zhang, X., Mao, L.,
and Li, A. (2017). Wheat functional genomics in the
era of next generation sequencing: An update. The
Crop Journal.
Langdon, W. B. and Lam, B. Y. H. (2017). Genetically
improved barracuda. BioData mining, 10(1):28.
Langmead, B. and Nellore, A. (2018). Cloud computing
for genomic data analysis and collaboration. Nature
Reviews Genetics, 19(4):208.
Li, W.-H. and Sadler, L. A. (1991). Low nucleotide diversity
in man. Genetics, 129(2):513–523.
Manogaran, G., Vijayakumar, V., Varatharajan, R., Kumar,
P. M., Sundarasekar, R., and Hsu, C.-H. (2018). Ma-
chine learning based big data processing framework
for cancer diagnosis using hidden markov model and
gm clustering. Wireless personal communications,
102(3):2099–2116.
Mohanty, A. S., Gomez-Gelvez, J. C., Petrova-Drus, K.,
Zaidinski, M., Wang, W., Yao, J. J., Ho, C., Zehir,
A., and Arcila, M. E. (2017). Use of next genera-
tion sequencing and single nucleotide polymorphism
(snp) fingerprinting to assess post transplant engraft-
ment status.
Nobre, R., Santander-Jim
´
enez, S., Sousa, L., and Ilic, A.
(2020). Accelerating 3-way epistasis detection with
cpu+ gpu processing. In Workshop on job schedul-
ing strategies for parallel processing, pages 106–126.
Springer.
Pabinger, S., Dander, A., Fischer, M., Snajder, R., Sperk,
M., Efremova, M., Krabichler, B., Speicher, M. R.,
Zschocke, J., and Trajanoski, Z. (2014). A sur-
vey of tools for variant analysis of next-generation
genome sequencing data. Briefings in bioinformatics,
15(2):256–278.
Rall
´
on, N. I., Naggie, S., Benito, J. M., Medrano, J., Re-
strepo, C., Goldstein, D., Shianna, K. V., Vispo, E.,
Thompson, A., McHutchison, J., et al. (2010). Asso-
ciation of a single nucleotide polymorphism near the
interleukin-28b gene with response to hepatitis c ther-
apy in hiv/hepatitis c virus-coinfected patients. Aids,
24(8):F23–F29.
Sachidanandam, R., Weissman, D., Schmidt, S. C., Kakol,
J. M., Stein, L. D., Marth, G., Sherry, S., Mullikin,
J. C., Mortimore, B. J., Willey, D. L., et al. (2001). A
map of human genome sequence variation containing
1.42 million single nucleotide polymorphisms. Na-
ture, 409(6822):928–933.
Shen, J., Li, Z., Song, Z., Chen, J., and Shi, Y. (2017).
Genome-wide two-locus interaction analysis identi-
fies multiple epistatic snp pairs that confer risk of
prostate cancer: A cross-population study. Interna-
tional journal of cancer, 140(9):2075–2084.
Sreeharsh, N., Sawarkar, S., and Tiwari, A. (2022). Gpu-
accelerated scalable feature extraction techniques with
scalable kernelized fuzzy clustering algorithms and its
application to real-life genomics data for gene identi-
fication.
Trick, M., Long, Y., Meng, J., and Bancroft, I. (2009). Sin-
gle nucleotide polymorphism (snp) discovery in the
polyploid brassica napus using solexa transcriptome
sequencing. Plant biotechnology journal, 7(4):334–
346.
Tsai, S.-F., Tung, C.-W., Tsai, C.-A., and Liao, C.-T.
(2017). An exhaustive scan method for snp main ef-
fects and snp× snp interactions over highly homozy-
gous genomes. Journal of Computational Biology,
24(12):1254–1264.
Wagner, M., Tupikowski, K., Jasek, M., Tomkiewicz, A.,
Witkowicz, A., Ptaszkowski, K., Karpinski, P., Zdro-
jowy, R., Halon, A., and Karabon, L. (2020). Snp-snp
interaction in genes encoding pd-1/pd-l1 axis as a po-
tential risk factor for clear cell renal cell carcinoma.
Cancers, 12(12):3521.
Wienbrandt, L., K
¨
assens, J. C., and Ellinghaus, D. (2021).
Snpint-gpu: tool for epistasis testing with multiple
methods and gpu acceleration. In Epistasis, pages 17–
35. Springer.
Yung, L. S., Yang, C., Wan, X., and Yu, W. (2011). Gboost:
a gpu-based tool for detecting gene–gene interactions
in genome–wide case control studies. Bioinformatics,
27(9):1309–1310.
Zafalon, G. F. D., da Cruz,
´
A. M. N.and Amorim, A. R., An-
drade, M. C., Contessoto, A. G., Neves, L. A., Souza,
R. C. G., Val
ˆ
encio, C. R., and Sato, L. M. (2018).
Performance improvement of snp search using mul-
tithread programming. Journal of Computer Science,
14(11):1465–1474.
Optimization of SNP Search Based on Masks Using Graphics Processing Unit
141