Martin, H., Winkler, B., Grubm
¨
uller, S., and Watzenig, D.
(2019). Identification of performance limitations of
sensing technologies for automated driving. In 2019
IEEE International Conference on Connected Vehi-
cles and Expo (ICCVE), pages 1–6.
Mathworks (2022a). aperture2gain: Convert effective aper-
ture to gain. https://de.mathworks.com/help/phased/r
ef/aperture2gain.html?searchHighlight=%20ap.
Mathworks (2022b). Create physics-based radar model
from statistical model. https://de.mathworks.com
/help/radar/ug/radar-model-abstract-level.html.
Mathworks (2022c). fspl: Free space path loss. https://de.m
athworks.com/help/phased/ref/fspl.html#:
∼
:text=Des
cription, -example&text=L%20%3D%20fspl(%20R
%20%2C%20lambda%20)%20returns%20th.
Mathworks (2022d). Introduction to statistical radar models
for object tracking. https://www.mathworks.com/help
/fusion/ug/introduction-to-radar-for-object-tracking
.html.
Mathworks (2022e). Radar data cube concept. https://de.m
athworks.com/help/phased/gs/radar-data-cube.html?s
earchHighlight=RADAR%20data%20cube&s tid=s
rchtitle RADAR%252.
Mathworks (2022f). Radar equation: Radar equation the-
ory. https://de.mathworks.com/help/radar/ug/radar-e
quation.html.
Mathworks (2022g). radardatagenerator: Generate radar
detections and tracks. https://de.mathworks.com/h
elp/radar/ref/radardatagenerator-system-object.html.
Mathworks (2022h). speed2dop: Convert speed to doppler
shift. https://de.mathworks.com/help/phased/ref/spe
ed2dop.html?searchHighlight=speed2do.
Mathworks (2022i). time2range: Convert propagation time
to propagation distance. https://de.mathworks.com/h
elp/phased/ref/time2range.html?searchHighlight=tim
e%25.
Mazzega, J. (2019). Pegasus method: An overview. PE-
GASDU Symphony.
Parker, M. (2017). Chapter 20-automotive radar with contri-
butions by ben esposito. In Parker, M., editor, Digital
Signal Processing 101 (Second Edition), pages 253–
276. Newnes, 2nd edition.
Podcast (2022). Understanding i/q signals and quadrature
modulation: Chapter 5 - radio frequency demodula-
tion. https://www.allaboutcircuits.com/textbook/radi
o-frequency-analysis-design/radio-frequency-demo
dulation/understanding-i-q-signals-and-quadrature-
modulation/.
SAEJ3016 (2021). Taxonomy and definitions for terms re-
lated to driving automation systems for on-road motor
vehicles. https://www.sae.org/standards/content/j301
6 202104/.
Schlager, B., Muckenhuber, S., Schmidt, S.and Holzer, H.,
Rott, R.and Maier, F. M., Saad, K., Kirchengast, M.,
Stettinger, G., Watzenig, D., and Ruebsam, J. (2020).
State-of-the-art sensor models for virtual testing of ad-
vanced driver assistance systems / autonomous driv-
ing functions. SAE International Journal of Con-
nected and Automated Vehicles, 3(3):233–261.
UL4600 (2022). Standard for evaluation of autonomous
products. https://ul.org/UL4600.
Valdez Banda, O. A. and Goerlandt, F. (2018). A stamp-
based approach for designing maritime safety man-
agement systems. Safety Science, 109:109–129.
Winner, H., Hakuli, S., Lotz, F., and Singer, C.
(2015). Handbuch Fahrerassistenzsysteme: Grund-
lagen, Komponenten und Systeme f
¨
ur aktive Sicher-
heit und Komfort. Springer Vieweg Wiesbaden, Wies-
baden, 3rd edition.
Wolf, C. (2022). The radar range equation, argumenta-
tion/derivation. https://www.radartutorial.eu/01.ba
sics/The%20Radar%20Rang%20Equation.en.html.
Yu, W., Li, J., Peng, L.-M.and Xiong, X., Yang, K., and
Wang, H. (2022). Sotif risk mitigation based on uni-
fied odd monitoring for autonomous vehicles. Journal
of Intelligent and Connected Vehicles.
Zhou, Y., Liu, L., Zhao, H., L
´
opez-Ben
´
ıtez, M., Yu, L., and
Yue, Y. (2022). Towards deep radar perception for au-
tonomous driving: Datasets, methods, and challenges.
Sensors, 22(11).
Ziegler, J., Bender, P., Schreiber, M., Lategahn, H., Strauss,
T., Stiller, C., Dang, T., Franke, U., Appenrodt, N.,
Keller, C. G., Kaus, E., Herrtwich, R. G., Rabe, C.,
Pfeiffer, D., Lindner, F., Stein, F., Erbs, F., Enzweiler,
M., Kn
¨
oppel, C., Hipp, J., Haueis, M., Trepte, M.,
Brenk, C., Tamke, A., Ghanaat, M., Braun, M., Joos,
A., Fritz, H., Mock, H., Hein, M., and Zeeb, E. (2014).
Making bertha drive—an autonomous journey on a
historic route. IEEE Intelligent Transportation Sys-
tems Magazine, 6(2):8–20.
A Simulation-Based Testing to Evaluate and Improve a Radar Sensor Performance in a Use Case of Highly Automated Driving Systems
53